Anti-Inflammatory/Anti-Aging Strategies
Header image

Delirium is an under-reported condition that may affect up to 56% of older individuals after surgery, patients that have been heavily sedated for a length of time, burn, cancer, and patients on ventilators for long periods. Patients experience vivid hallucinations that may be part of a vicious cycle if doctors attempt to control the delusions with larger amounts of sedatives; the medications may disorient and confuse the patient even more.

The delusions and accompanying cognitive issues can persist for months after patients leave the hospital and can lead to a misdiagnosis of dementia, rather than delirium. [Dementia develops gradually and gradually worsens, while delirium may be of sudden onset.]

Delirium is associated with excessive inflammation in the brain resulting from triggering specialized immune cells the microglia. If stimulated over a long time, the cells release inflammatory cytokines, molecules that damage nerve cells and contribute to damage and break down of the capillaries in the brain, the blood-brain barrier.

C-reactive protein, CRP, is one measure of inflammation. CRP levels were measured in elderly surgical patients who had ended up with complications such as delirium, cardiovascular issues, or infection. The levels of CRP in their blood were predictive as to how fully they recovered.

A recent study measured the levels of 12 different inflammatory and anti-inflammatory cytokines in older patients undergoing surgery. Those having episodes of delirium had consistently high levels of inflammatory cytokines as compared to patients that did not have high levels of cytokines. Similar results were seen in patients that developed delirium after procedures such as open-heart surgery and hip fracture repair.

Conclusion

In order for the body to heal after it is hurt, or to fight an infection successfully, a delicate balance of cytokines, immune messages are required. Too little of an inflammatory response and the individual may not survive an infection. Too much of an inflammatory response and healthy tissue is destroyed. Homeostasis, balance, is what the body strives for every moment.

Dr. Hellen would be pleased to provide guidance to helping enhance your quality of life.  She may be contacted by using this form or at: 302.265.3870 (ET, USA).

 

www.theatlantic.com/health/archive/2015/06/the-overlooked-danger-of-delirium-in-hospitals/394829/
www.mayoclinic.org/diseases-conditions/delirium/basics/definition/con-20033982
www.ncbi.nlm.nih.gov/pmc/articles/PMC2911011
intl-biomedgerontology.oxfordjournals.org/content/early/2015/07/24/gerona.glv083.full
www.sciencedirect.com/science/article/pii/S2210833511000773
www.ncbi.nlm.nih.gov/pubmed/17504139

 

 

Immediately after the body is injured, it starts the processes of stopping blood loss, restoring function, and preventing infection from pathogens on the skin or objects that may have caused the damage. The microenvironment of the injured area is in constant flux with the host cells continuously responding to the fluids, bacteria, and the dead and dying cells at the wound site.

One of the first phases of the healing process is for circulating platelets to attach to a fibrous scaffold, a matrix, to stop blood flow. Platelets, recently defined as immune cells, release cytokines, immune messengers, which permit cells to communicate with one another.

 Once the flow of blood ceases, specialized immune cells enter the area setting up an inflammatory response that “cleans” the wound site and removes bacteria, damaged tissues, and foreign matter. In order to achieve the appropriate levels of inflammation, many complex cell-to-cell interactions occur in specific order.

Accumulation of fluids, exudates, results from inflammation, along with swelling at the wound site. Exudates are essential for the healing process and contain debris, inflammatory cells, bacteria, and a large variety of immune proteins. Depending on their concentrations, factors may enhance healing or interfere with the process. Proteins found in exudates have a variety of functions including regulation of inflammatory responses, triggering growth of new blood vessels, and stimulating growth of new cells.

A delicate balance of inflammatory and anti-inflammatory messengers is crucial and it determines the pace, and outcome of healing. Homeostatic, balanced, inflammatory responses are essential. Too little, too great, or too lengthy of an inflammatory response damages healthy tissue and delays healing.

The remodeling phase is one where tissues regenerate and close the wound. Closure occurs as cells cross-link and organize themselves attaching to a scaffold, a matrix that will draw edges of the skin closed and cover the area.

Poorly Healing Wounds

The presence of bacteria, foreign bodies, a lack of oxygen in the tissues, and/or fragments of necrotic, dead, tissue can stimulate inflammatory cells continuously, resulting in uncontrolled inflammation and wounds that heal poorly.

Infection of a wound site also interferes with proper healing. Communities of bacteria tend to organize themselves into a biofilm, a thin sheet of bacteria. Biofilms increase survival of bacteria colonies, reducing chances that inflammatory immune responses, or antibiotics, can control them.

Exudates in poor healing wounds contain an over abundance of inflammatory cells and immune mediators that increase inflammation. Sufficient anti-inflammatory factors to control the damaging effects of excessive inflammation may not be available.

Proteolysis is another one of the steps required for healthy healing. This is an event during which the body degrades necrotic tissue, and dead and dying pathogens. [Think of proteolysis as an acid/enzyme reaction that breaks down tissues.] When immune cells release too many proteolytic proteins over a longer period, they become destructive of healthy tissue, and the body’s ability to heal the wound is overwhelmed.

Individuals with non-healing skin ulcers, such as those found in diabetics, not only struggle with excessive inflammatory responses, but their proteolytic enzyme levels are significantly elevated giving rise to further imbalances in inflammatory responses and interference with the body’s repair mechanisms.

Summary

The sensitive balance between stimulating and inhibitory mediators during diverse repair of wound is crucial to achieving tissue homeostasis following injury. Once unbalanced and excessive inflammation is controlled, will healing begin.

 
There is no fee for speaking with Dr. Hellen. She may be contacted by using this form or at: 302.265.3870 (ET).


www.ncbi.nlm.nih.gov/pubmed/25750642
www.nature.com/jid/journal/v127/n3/full/5700701a.html
www.rndsystems.com/mini_review_detail_objectname_mr02_cytokinewoundhealing.aspx
www.ncbi.nlm.nih.gov/pubmed/25774966
www.uweb.engr.washington.edu/research/tutorials/woundhealing.html
www.ncbi.nlm.nih.gov/pubmed/22564225
www.ncbi.nlm.nih.gov/pubmed/14766366
www.bioscience.org/2004/v9/af/1184/2.htm
www.ncbi.nlm.nih.gov/pmc/articles/PMC3467878

The brain, being the “control center” of the body is cushioned by fluid, and is protected by bone and layers of membranes that support blood vessels that feed the brain.

Concussions
Direct or indirect mechanical impact to the brain may result from sports activities or workplace accidents. These may result in trauma to the brain. Rapid acceleration or deceleration, e.g., motor vehicle accidents or intense changes in pressure, e.g., blast exposures can also lead to brain damage.

The term “concussion” is commonly used to refer to a brain injury resulting from the head being hit with a great deal of force. Shaking the upper body and head violently can also cause brain damage.

Concussions alter the way the brain functions. The effects are usually short-lived, but may include being dazed, headaches, and problems with concentration, memory, balance, and coordination.

Brain injuries may result in loss of consciousness, but since the majority of cases do not end in “blackouts”, concussions often occur without the individual realizing they have had damage. The impact may seem relatively mild, and the individual may appear only to be dazed and with time and rest they may heal properly.

Serious untreated concussions can result in long-term brain damage and may even end in death.
Repetitive head injuries are a major issue especially when an individual sustains additional head injuries before the damage from the prior injury has been completely resolved.

The effects are cumulative. Cumulative sports concussions increase the likelihood of permanent neurologic disability. Complete recovery from an initial trauma can take from 6-18 months, and multiple concussions over time may result in long-term problems, including neurological deterioration, dementia-like symptoms, memory disturbances, behavioral, and personality changes, Parkinsonism, and speech and gait abnormalities.

In a minority of cases, additional trauma to the brain, even occurring from days to weeks following a prior event, can lead to collapse and death within minutes.

How quickly and completely one heals, depends on a number of factors including one’s genetic makeup. (This would be expected since genes determine a cell’s ability to withstand mechanical stress, regenerate, and heal.)

Inflammation and Concussions
For years it was thought that the membranes around the brain acted as a blood-brain barrier which stopped the brain from responding with inflammatory responses when it was confronted by infection. However, it has now been shown that concussions and other brain injuries, or infection or disease, will trigger inflammatory responses.

The types of immune cells found throughout the body are also found in the brain, but additionally, the brain has unique immune cells. When activated, brain-specific microglia and astrocytes, produce inflammatory cytokines that remain localized in the brain.

In response to brain injury, the immune system releases a tidal wave of pro- and anti-inflammatory cytokines, molecules that trigger and/or stop an inflammatory response depending on what is needed.

In small amounts, these cytokines help protect the brain and heal it. However, prolonged exposure to inflammatory cytokines, or too high a level of these proteins, will result in damage that accumulates after injury. High levels of inflammatory cytokines are localized at the injury site, and may be found on the opposite side of the head from the side that was hit.

There is increasing evidence suggesting that much of the neurological damage that occurs after the brain is injured is the result of a delayed inflammatory response that lasts hours, days, or even for months after the injury. This chronic inflammatory response may cause more damage to the brain tissue than the mechanical impact itself.

Immune Homeostasis, Immune Balance is the Key
Unfortunately, pharmaceutical treatments known to reduce inflammation appear to interfere with the brain’s natural repair mechanisms. Therefore it is necessary for the body to control its inflammatory responses. It has to produce enough of a response to help brain tissue heal, but not an overly exaggerated inflammatory response which may cause more damage after injury.

In order for the brain to heal after trauma, the immune system must generate the proper balance, and types, of pro-inflammatory and inflammatory cytokines. For those with brain injuries, maintaining immune homeostasis, immune balance, may be the best way to minimize damage.

 

Dr. Hellen is available at 302.265.3870 for discussion on the role of inflammation and immune homeostasis in our health.  She may be contacted at: drhellen@drhellengreenblatt.info, or use the contact form.  Thank you.

emedicine.medscape.com/article/92189-overview#a0107
www.ncbi.nlm.nih.gov/pmc/articles/PMC2945234/
emedicine.medscape.com/article/92189-overview
www.headcasecompany.com/concussion_info/stats_on_concussions_sports
www.ncbi.nlm.nih.gov/pmc/articles/PMC3520152/

 

This month was the 13th anniversary of the haunting September 11 event that has changed us, our Nation, and the world we thought we knew. It seems like yesterday that these events happened.

Three years ago, I posted my frustration of my inability to get First Responders, and/or their health practitioners, to consider addressing the issue of immune homeostasis, immune balance, to enhance the quality of life of individuals that had put themselves at risk to save others.

 Exposure to Air-Borne Particles

The World Trade Center Health Registry estimates about 410,000 people were exposed to air-borne particles and toxins attempting to rescue survivors and recover the dead, clearing the site, or cleaning the surrounding buildings.

 Despite the fact that early in the World Trade Center (WTC)’ construction, builders abandoned asbestos as a fireproofing material, over 400 tons of asbestos were used in the building of the World Trade Center (WTC). Additionally ”mineral wool”, minerals that were melted and spun into fibers and bound together by cement like components was used in construction.

 Massive amounts of hazardous fiber, asbestos, glass, gypsum, and cement were pulverized into ultra-fine particles when the Towers imploded and collapsed on September 11. Virtually every surface was covered with a fine, white particulate dust, and downwind from the complex, the fine particulate matter settled to a depth of 3 inches or more.

Affected groups of Responders include firefighters, police, health professionals, clean-up crews, construction workers, truck drivers, transit workers, lower Manhattan residents, and office workers.

 Increase Risk of Cancer

Responders were exposed to hundreds, if not thousands, of toxic particulates, dust, and gases at Ground Zero. As many of these are known to be potential carcinogens, it is not surprising that two years ago, 58 different types of cancers were added to a list of diseases with which many World Trade Center responders suffer.

 Overall, First Responders at Ground Zero have a 15% increased cancer risk with a 239% higher risk for thyroid cancers. However, unfortunately, asbestos-related lung cancers such as malignant mesothelioma may not appear for 20-40 more years.

 Signature Illness: PSTD and Respiratory Illness

If having a significant increase in cancer risk was not enough, according to the findings of the Stony Brook [NY] Medicine’s World Trade Center Health Program, as many as 60% of 9/11 World Trade Center responders continue to experience “clinically significant symptoms of post-traumatic stress disorder (PTSD) and … respiratory illness”.

Coughing and breathing problems have been a major issue, even in Responders that were only “moderately” exposed. Additionally individuals with the most exposure were more likely to find that their asthma symptoms became worse.

Benjamin Luft, MD, Medical Director of the Stony Brook Program is of the opinion that “a signature illness” of a WTC Responder is having both PTSD and respiratory problems at the same time.

 Respiratory Difficulties and Inflammation

Inflammatory biomarkers have been monitored in those exposed to WTC dust and smoke. Elevated levels soon after exposure were associated with increased risk of difficulty breathing in the years that followed.

 PTSD and Inflammatory Responses

A few months ago I stated “Clinical studies suggest that individuals with post-traumatic stress disorders suffer from chronic low-level inflammation. This is reflected in their greater propensity to have inflammation-associated diseases such as autoimmune, cardiovascular, gastrointestinal, musculoskeletal, and respiratory diseases.”

 “…individuals with PTSD are more likely to have significantly higher amounts of circulating CRP [an inflammatory marker] than those not diagnosed with PTSD.”

 The Combination of PTSD and Respiratory Issues

To repeat from my previous post,“The immune system mounts an immune, inflammatory response when the body is exposed to pathogens, pollutants, or toxins. The inflammatory cells release immune factors, such as cytokines, cellular messages, that are involved in cell-to-cell communication with the “purpose” of recruiting more inflammatory cells into an area to help eliminate a perceived threat.”

 “Pollutants and chemicals … trigger airway inflammation and increase mucous production. Other immune molecules cause narrowing of airways resulting in the contraction of the muscles lining the airways. The combination of inflammation and increased mucous makes it difficult for air to enter or leave the lungs and can result in breathing issues.”

“Additionally, lungs that do not function properly, are ideal for the multiplication of molds, bacteria, and viruses. The lungs continue their struggle to eliminate pollutants and pathogens, resulting in a chronic, persistent, dry cough and worsened lung function.”

 A Plea to Readers

I am convinced that immune inflammatory imbalances contribute in large portion to the reason that that First Responders experience so many health challenges.

 It is my heart-felt hope and expectation that helping individuals return to immune homeostasis, immune balance, may be the key to changing their quality of life. Despite numerous attempts and avenues, I have been unable to make reliable contact with decision makers or Responders.   I hope that you will forward my note to individuals that are still suffering the consequences of serving others.

 I can be reached at: DrHellen@DrHellenGreenblatt.info or at 302.265.3870. Thank you.

www.asbestos.com/world-trade-center/
sb.cc.stonybrook.edu/news/general/140910wtc.php
911research.wtc7.net/wtc/evidence/dust.html
www.sciencedaily.com/releases/2014/09/140910185910.htm
www.health.ny.gov/environmental/investigations/wtc/health_studies/responders.htm
www.cnn.com/2013/09/11/health/911-cancer-treatment/
www.thelancet.com/themed-911
www.mesothelioma.com/blog/authors/barbara/help-running-out-for-911-first-responders.htm
www.ncbi.nlm.nih.gov/pubmed/21998260

Post-traumatic stress disorder (PTSD) occurs in some individuals that are exposed to emotionally disturbing events such as combat, rocket, and terrorist attacks. Individuals that have suffered traumatic brain injury (TBI) or experienced natural disasters and sexual assault are also at higher risk of having this disorder.

Symptoms may include quality of life issues such as explosive outbursts of anger, difficulties in concentrating, being easily startled, feeling constantly “on guard”, expecting a threat to occur at any moment, depression, problems sleeping, avoiding people and circumstances that can trigger unpleasant memories or outbursts, limiting emotional relationships, and avoiding crowded locations.

Up to twenty percent of veterans serving in Iraq and Afghanistan, 10% of Gulf War (Desert Storm), and 30% of Vietnam Veterans have been diagnosed with post-traumatic stress disorder.

PTSD is not only a psychiatric issue. Individuals suffering with PTSD are at higher risk of being physically ill, and at increased risk of death from a multiple of causes.

PTSD is Associated with Inflammatory Responses.
Clinical studies suggest that individuals with post-traumatic stress disorders suffer from chronic low-level inflammation. This is reflected in their greater propensity to have inflammation-associated diseases such as autoimmune, cardiovascular, gastrointestinal, musculoskeletal, and respiratory diseases.

A combination of high blood sugar, cholesterol, and blood pressure, coupled with excess fat around the abdomen (abdominal visceral fat), increases the risk of individuals for stroke, heart disease, and diabetes. This cluster of symptoms, metabolic syndrome, is associated with inflammation and is found in 48% of individuals with post traumatic stress syndrome compared to 25% of controls. Such clinical issues result in patients with PTSD utilizing a greater proportion of medical services and prescription medications.

IL-6 is a cytokine, an immune messenger, which plays a major role in inflammation, helping the body heal after tissue injury, and defending the body from pathogens. C-reactive protein (CRP) is another biological marker that is strongly related to heightened levels of inflammation. Elevated levels of IL-6 and CRP are associated with an increased risk of heart attacks and other cardiovascular events that are inflammatory in nature.

Reports of increased presence of inflammatory cytokines in individuals with PTSD are inconsistent. However, the evidence suggests in military personnel with PTSD or depression, IL-6 levels are higher than found in control subjects, and that the quality of life of these soldiers is poorer as well. Similarly, individuals with PTSD are more likely to have significantly higher amounts of circulating CRP than those not diagnosed with PTSD.

Intermittent explosive disorder is one of the more troubling aspects of some individuals with post traumatic stress disorder. This condition involves repeated episodes of impulsive, angry, verbal outbursts, and violent and aggressive behavior. CRP and IL-6 levels are significantly higher in personnel with intermittent explosive disorder compared with normal or other psychiatric controls, suggesting a direct relationship between inflammation and aggression.

Summary:
Fifty percent of individuals with post traumatic stress syndrome do not seek treatment, and of those that do, only half of these persons will get “minimally adequate” treatment. Until now, the primary treatments for PSTD are psychological counseling and psychiatric medications.

Inflammation is the result of a delicate balance between inflammatory and anti-inflammatory responses, and the body constantly strives to maintain a state of “immune homeostasis”, immune balance.

As in most disease, chronic low-grade inflammation is a likely contributor to post traumatic stress syndrome. If individuals with PTSD better controlled the amount of inflammation produced by their bodies, their quality of life would improve, both emotionally and physically.

 

There is no cost to speak with Dr. Hellen. She can be reached at 1.302-265.3870 ET [USA] or contacted at: drhellen@drhellengreenblatt.info.

 

www.ncbi.nlm.nih.gov/pubmed/23806967
www.nimh.nih.gov/health/topics/post-traumatic-stress-disorder-ptsd/index.shtml
www.ncbi.nlm.nih.gov/pubmed/24157651
archpsyc.jamanetwork.com/article.aspx?articleid=1833091
www.medpagetoday.com/Psychiatry/AnxietyStress/44519
www.cdc.gov/niosh/topics/traumaticincident/
www.ncbi.nlm.nih.gov/pubmed/19780999
www.biomedcentral.com/1471-244X/13/40
www.ncbi.nlm.nih.gov/pubmed/24948537
archpsyc.jamanetwork.com/article.aspx?articleid=1790358
www.ncbi.nlm.nih.gov/pubmed/24559851
www.ncbi.nlm.nih.gov/pubmed/24875221
circ.ahajournals.org/content/101/15/1767.full
www.veteransandptsd.com/PTSD-statistics.html
www.hindawi.com/journals/cherp/2012/490804/

Blood disorders are diseases that affect blood components: 1) red blood cells, 2) white blood cells, and/or 3) platelets.

 Red blood cells are disc-shaped cells that carry oxygen from the lungs to all the cells in the body White blood cells are immune cells that help the body heal, and protect itself from infections and cancerous cells that might grow into tumors or cancers of the blood.  Platelets are blood elements that stick to the lining of blood vessels and help the blood to clot when  bleeding from a wound.

 Some common blood disorders are  anemia, thalassemia, sickle cell anemia,  idiopathic thrombocytopenic purpura (ITP),pernicious anemia,  hemolytic anemia, and aplastic anemia.

 All of these disorders have a single commonality, mainly that individuals with these types of conditions have low numbers of red cells, white blood cells, and/or platelets.

 Inflammation is necessary for our survival. Invasion by pathogens initiates inflammatory processes that attack these organisms. However, too often the “forest fire” gets out of control, and healthy cells, tissues, and organs are damaged.  When the body attacks its own cells, the condition is called an autoimmune, against -oneself, response.

 Thalassemia is an inherited disease in which people have abnormally low numbers of red blood cells and low hemoglobin. The hemoglobulin molecule is faulty and unable to carry its typical complement of oxygen.  [Hemoglobin is a protein that  helps  transport oxygen throughout the body.  Red blood cells also carry waste gases like carbon dioxide  to the lungs where it is released and then exhaled.]

 Individuals with thalassemia often suffer from inflamed blood vessels and slower blood flow in their blood vessels.  Both problems put individuals at greater risk of suffering from thromboembolism.  In this condition, a blood clot, an embolus, partially or totally blocks blood vessels deep in the body (deep vein thrombosis) or a clot is released that suddenly interferes with blood flow within a lung artery (pulmonary embolism), which can be fatal.

As blood clots form, an inflammatory response is triggerred to break up the clots.  More inflammation results in the production of more cytokines, immune messages that affect blood clotting.  Individuals with thalassemia, as with other blood disorders, typically have higher levels of inflammatory cytokines than individuals without such conditions.

It never ceases to amaze me how many health practitioners ignore the contribution of inflammatory process to diseases such as thalassemia.  In blood disorders, as with most other diseases, achieving and maintaining immune inflammatory homeostasis, balance, is essential.

 Being in homeostasis means that there are enough immune factors, pro-inflammatory cytokines to initiate a proper inflammatory response, and corresponding anti-inflammatory factors to limit inflammation and the damage it may cause.  A delicate balance of these messages are essential.

 What does one lose by moderating excessive inflammatory responses?  Control inappropriate levels of inflammation, and improve the quality of life of those with blood disorders, and most other diseases.

 [Please look for future posts on other blood disorders such as sickle cell anemia, pernicious anemia, and idiopathic thrombocytopenic purpura (ITP)].

 There is no cost to readers of these posts to speak with Dr. Hellen.  She can be reached at 1.302-265.3870 [USA] or contacted at:  drhellen@drhellengreenblatt.info .

 

www.nhlbi.nih.gov/health/public/blood/
www.nhlbi.nih.gov/health/health-topics/topics/pe/
www.sciencedirect.com/science/article/pii/S1079979609001387
bloodjournal.hematologylibrary.org/content/87/12/5051.full.pdf

 

 

People with serious lung problems who are unable to breathe for themselves, for example, patients in intensive care units recovering from injuries, or who have viral, or bacterial infections, like pneumonia, may be placed on mechanical ventilation.

Although these patients may require a ventilator, too often these devices make their lung conditions worse. Patients with lung injuries that require mechanical ventilation lead to more deaths annually than do breast cancer and prostate cancer combined.

For years, scientists have known that when lungs are exposed to rhythmic pressure of ventilation, the production of cytokines, immune messengers, are stimulated.  This excessive production of cytokines results in “boosted”  levels of inflammation in the lungs that may damage the lungs, even after ventilation has been stopped. Excessive inflammation can lead to the destruction of formerly healthy organ systems.

It is as if the immune system sees “pressure” as a “foreign agent” an event against which the body much be protected.  The pressure appears to trigger an immune inflammatory response in the body.

This phenomenon can be seen even at the cellular level.  Exposing cells in a test tube to as few as four hours of rhythmic pressures results in increased levels of inflammatory cytokines that recruit more inflammatory immune cells into the area. Twelve (12) hours of ventilation-type treatment results in a 5-7 times increase in the levels of inflammatory cytokines.

During winter months, respiratory infections are the most frequent cause of intensive care unit hospitalizations for infants.  For some infections, Infants that are on mechanical ventilators have  significantly higher levels of lung inflammation than infants not being ventilated. However, even in healthy children, mechanical ventilation triggers an inflammatory response within hours.

 For over a decade I have tried to educate the public about the need for the body to maintain immune inflammatory homeostasis, immune balance; having enough inflammation to do the job, but not so much that it causes damage.

 Inflammation is necessary for our survival to protect us from infections, and it is the first step the body takes when it heals itself, for example, after an injury. 

But the amount of inflammation produced by the body must be tightly limited, because too much inflammation is like an uncontrollable forest fire.

One of my greatest frustrations has been trying to help medical practitioners understand that inappropriate inflammation is the foundation of most of their patients’ problems, but too often, “they just couldn’t get it”.  Now, every journal, every magazine touts the fact that “inflammation is the root cause of disease”.  They admit that it has a role in cardiovascular disease, gastrointestinal, emotional problems  etc. and that inflammatory responses play a major role in cancer.

It has been my experience that when individuals have major health issues, “following the levels of inflammation” will help explain what is happening to the patient.  In cases of mechanical ventilation, other procedures  and conditions, what would be the harm in taking steps to limit uncontrolled levels of inflammation, and help return the body to immune homeostasis?

 

Dr. Greenblatt looks forward to assisting you in returning to immune balance:  She can be contacted at: http://drhellengreenblatt.info/contact-dr-hellen or 1.302-265.3870 [USA, ET]. Thank you.

 

www.ncbi.nlm.nih.gov/pubmed/24349427
www.ncbi.nlm.nih.gov/pmc/articles/PMC3859624/
www.ncbi.nlm.nih.gov/pubmed/?term=Ghadiali+ventilators
researchnews.osu.edu/archive/lungvent.htm
www.fasebj.org/search?fulltext=Samir+Ghadiali&submit=yes&x=13&y=12
www.medicine.uiowa.edu/Newsarticle.aspx?id=22193
www.ncbi.nlm.nih.gov/books/NBK6868/
 

Alcoholism is a condition in which individuals drink alcohol in excess despite the fact that their habit causes physical and mental health problems, and social, family, and/or job-related issues. Heavy alcohol consumption results in damage to many parts of the body including the brain, liver, digestive system, and  joints. Alcoholics also suffer with dementia, memory loss, depression, emotional instability, and are at increased risk of cancer of the colon, liver, and esophagus.

Immune System Effects

Prolonged, heavy alcohol consumption negatively affects immune cells and their production of cytokines, immune messages.  Alcoholics have significantly higher rates of bacterial and viral infections and when hospitalized remain hospitalized longer than those that do not abuse alcohol.   Alcohol not only kills key immune cells, but excess amounts of alcohol results in an increased risk of autoimmune responses in which the body’s immune cells mistakenly attack the body’s own healthy cells as foreign.

The body constantly strives to maintain immune inflammatory homeostasis; to balance the amount of inflammation it produces to protect the body from infection.  Imbalances of inflammatory responses, loss of immune homeostasis, result from excessive alcohol consumption. For example, white cells, immune cells, search out and destroy and remove pathogens from the lungs.  After alcohol consumption, fewer immune cells respond to the call for “help”.  Those cells that do enter the lungs are unable to kill microbes as effectively as cells from non-alcoholic animals.

The inefficient immune responses of alcoholics lead them to be more vulnerable to viral infections such as hepatitis C, influenza, and HIV and bacterial infections including tuberculosis and pneumonia. Especially after experiencing trauma, e.g., surgery, alcoholics are more likely than non-alcoholics to get pneumonia.

A mouse study is one of many that demonstrates the decreased ability of alcohol-imbibing animals to fend off infection.  Sixty percent of mice that were exposed to the flu after imbibing alcohol for two months died of the flu as compared to a 15% mortality rate of mice that had not been drinking alcohol prior to exposure.

Hormone Effects:

Cortisol, the “stress-response hormone” affects nervous, immune, circulatory, and metabolic systems of the body.  After surgery, chronic alcoholics have higher cortisol levels compared to non-alcoholic patients.  The increased inflammation that accompanies stress also leads to higher levels of depression, other addictions, and mood disorders.

Other hormones effected by alcohol consumption are those a)that may interfere with the a women’s menstrual cycle, b) the ability for men and women to enjoy sex, or c) control blood sugar.

Nervous System Complications:

Alcohol is neuro-toxic to brain cells interfering with the development, repair, and communication of nerve cells. Consumption of large amounts of alcohol leads to shrinkage of white matter in the brain, adding to depression, confusion, short-term memory loss, “fuzzy” thinking, and a greater risk of getting dementia.  Alcohol also directly affects the nervous system in other ways, causing numbness, tingling, and pain in hands and feet.

Additionally, too great a consumption of alcohol, especially over a long period of time, results in problems with absorption of nutrients, the lack of which can become so severe that certain forms of dementia are triggered.

Bone Loss

Alcohol damages osteoblasts, the cells needed to grow and maintain bone.  Destruction of osteoblasts results in decreased bone mass and susceptibility to fractures and other orthopedic problems.  When a bone fracture occurs,  immune cells rush in to start the healing process. They release immune signals, cytokines that start the inflammatory process that recruits more cells into the area. However, when there is too much inflammation, healing, and bone growth is delayed with the result that bones become brittle, thin, or misshapen.

Vitamin B12, vitamin D,  phosphate, and magnesium are needed to grow bone.  Excessive intake of alcohol is associated with low or subnormal levels of these elements, further inhibiting the growth of and repair of bones.

Skin and Injuries

The cells in the skin help defend the body from pathogens, and keep the skin healthy, youthful, and supple.  The immune cells in the skin interact with the microbes that live on the surface. Although the numbers of bacteria on healthy skin stays constant, the types of bacteria that exist change depending on environmental and immune interactions

Heavy use of alcohol significantly slows the movement of immune cells, upsetting the balance, the homeostasis of the skin. Alcoholics experience a greater number of severe skin infections than individuals that drink responsibly.

Almost half of all patients coming into an emergency room with an injury, trauma cases, have high levels of alcohol in their blood.  Drunken patients have more severe symptoms, and take longer to recover.  They also have higher rates of death as compared to non-intoxicated patients.

Because these patients have imbalances of inflammatory response, it takes them longer to heal, and wounds may become more severe, more quickly. Alcohol damage to the skin continues even after they stop drinking. Alcoholics experience longer hospital stays, especially if they are patients in an intensive care unit.

In a study of two groups of animals with burns, 50% of the animals that had not consumed alcohol survived, compared to 20% of the alcohol-consuming animals.

Summary:

Although not discussed in this post, moderate intake of alcohol has a beneficial effect on inflammatory markers.  However, heavy drinking results in uncontrolled amounts of inflammation leading to a myriad of health consequences.  Controlling the amount of inflammation the body produces will make a major difference in the quality of life of an individual.

Some steps abusers of alcohol can take to help their body modulate inflammation are:

  •  Limit the number of drinks consumed*
  •  Exercise 30 minutes/day for 5 days a week (150 minute minimum/week)
  •  Have smaller food portion sizes.
  •  Consume more fruits and vegetables.

*It is recommended that women limit their alcohol intake to one drink** per day, and men to two drinks/day. [Women absorb and metabolize alcohol differently from men and are more susceptible to alcohol-related organ damage and trauma than men.]

**One drink is defined as 1.5 fluid ounces of 80-proof distilled spirits, 12 ounces of beer, or 5 ounces of wine (a pinot noir wine glass about 1/4 full).

Dr. Greenblatt  looks forward to assisting you in reaching your goals:   http://drhellengreenblatt.info/contact-dr-hellen or 1.302-265.3870 [USA, ET].

 

www.nlm.nih.gov/medlineplus/ency/article/000944.htm
eurheartj.oxfordjournals.org/content/25/23/2075.full
 www.ncbi.nlm.nih.gov/pubmed/21193024
www.ncbi.nlm.nih.gov/pmc/articles/PMC2377009/
www.ncbi.nlm.nih.gov/pubmed/23895590
www.ncbi.nlm.nih.gov/pmc/articles/PMC2906126/
www.ncbi.nlm.nih.gov/pubmed/24138635
www.ncbi.nlm.nih.gov/pmc/articles/PMC3005009/
www.ncbi.nlm.nih.gov/pubmed/23240627
pubs.niaaa.nih.gov/publications/10report/chap04b.pdf

www.ncbi.nlm.nih.gov/pubmed/23981442

 

 

 

Alzheimer’s and IVIG Rx
Last week John Gever, Senior Editor, MedPage Today brought attention to the results of a small study presented at the 2012 Alzheimer’s Association International Conference held in Vancouver, British Columbia.  In this study, patients with mild to moderate Alzheimer’s were given antibody preparations, immunoglobulin preparations, which were obtained by pooling plasma from numerous blood donors.  This sterile, medical product, IVIG, intravenous immunoglobulin, consists mostly of immunoglobulins, antibodies,  and is administered intravenously (IV). 

After receiving IVIG twice a month for three years, patient’s ‘ ability to function or think, their mood, or memory did not worsen over the three years. [Untreated Alzheimer’s disease patients typically show measurable declines in 3 to 6 months.]

The FDA, The U.S. Food and Drug Administration, has approved the use of IVIG for only six conditions.  However, it has been used “off-label”, to try and treat about 50 other conditions, including infectious diseases, a wide-range of autoimmune conditions, organ transplant and cancer patients, blood, and neurological conditions to mention a few.

When practitioners are asked how s/he thinks IVIG works, the response is typically, except for infectious diseases, “we are not sure”.

 IVIG Contains Immunoglobulins and Smaller Immune Factors
IVIG contains antibodies to organisms such as streptococcus, hepatitis, measles, polio, etc., that can specifically neutralize infectious agents.  Other immunoglobulins may be directed  against specific immunological factors. 

However, viewing reported results in chronically ill populations, I have always been of the opinion that IVIG also contains cytokines, or cytokine-like immune molecules, with potent immune system-modulating properties, which help the body return to immune homeostasis, immune balance. 

 I suggest that the reason that Alzheimer’s patients receiving IVIG saw a stabilization of their symptoms, is that IVIG limited inflammatory responses and thus slowed the progression of disease.

 Alzheimer’s and Inflammatory Cytokine Levels
This supposition is further supported by the fact that animal models suggest that excessive production of inflammatory cytokines, inflammatory messages, are implicated in Alzheimer’s disease. These animals have a condition similar to human Alzheimer’s, and also have higher levels of inflammatory cytokines in their blood.  When a drug was administered that inhibited the cytokines, there was less damage to nerve cells and neurological outcomes in the animals improved.  

 The scientists suggest that blocking production of high amounts of inflammatory cytokines may be beneficial for any number of brain conditions, such as “Alzheimer’s and Parkinson’s disease, multiple sclerosis (MS), motor neurone disease, frontotemporal dementia, and complications from traumatic brain injury.” (1)

 Immune Homeostasis, Immune Balance the Key to Health
Thus improvements, or at least delay in the onset of Alzheimer’s, or other brain –associated conditions, may be associated with the body achieving immune homeostasis.  A body in inflammatory balance controls the immune system’s  inappropriate inflammatory responses which otherwise may lead to damage of bystander tissues.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.

 


www.medpagetoday.com/MeetingCoverage/AAIC/33780
http://emedicine.medscape.com/article/210367-overview#aw2aab6b3
www.alz.org/aaic/tues_1030amct_ivig_trial.asp
www.jneurosci.org/content/32/30/10201.abstract?sid=349221d1-e12f-411a-80a6-80285ed5db54
www.ncbi.nlm.nih.gov/pubmed/22806462

 Role of Balancing Inflammatory and Anti-inflammatory Immune Factors (e.g., Cytokines):

An injury requires enough inflammation to start the healing process, but not so much that it starts a cascade of immune inflammation that causes damage to by-stander tissues. Cytokines are immune factors generated by white cells that initiate pro-inflammatory (inflammatory) responses and anti-inflammatory responses in response to infection or injury. A healthy person produces appropriate levels of these factors depending on the challenge it encounters. A body in immune homeostasis will either up-regulate, increase immune inflammation, or down-regulate, limit its inflammatory responses, depending on the body’s needs.

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Doctors often suggest non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin when a patient complains of a sprain or other work- or sport-related injury.. These pharmaceutical compounds inhibit the production of immune inflammatory molecules such as cytokines. Limit the amount of inflammation and its resulting pain and stiffness are decreased.

The problem is that many of these medications put people at risk of significant digestive, cardiovascular, kidney, and muscular/skeletal problems. For example, according to the American College of Gastroenterology, the regular use of non-steroidal anti-inflammatory drugs is the major cause of potentially life-threatening ulcers and stomach bleeding.

Also, some practitioners question whether the use of NSAIDs may be the cause of increases in osteoarthritis and the high level of knee and hip replacements.

Because of concerns about health risks, some health practitioners physicians suggest complementary, more natural methods, to decrease pain and inflammation, and perhaps even prevent damage from muscle injury.

Complementary Approaches:

Glucosamine: Glucosamine is a natural substance produced by the body that encourages cartilage regeneration and the production of synovial fluid that helps “lubricate” the joints. There is evidence that glucosamine has anti-inflammatory properties.

 Omega-3 Fish Oil:  Omega-3 fish oils have been shown to have anti-inflammatory properties and help the body control pro-inflammatory cytokines and the pain that results from up regulating, increasing, inflammation.

 Vitamin D3:Vitamin D appears to affect immunological function such as inflammation. Vitamin D supplementation has been found to provide therapeutic relief.

Hyperimmune Egg: Hyperimmune egg, an all natural, food-based ingredient, is another approach to helping the body return to immune inflammatory homeostasis. In a study conducted at a major hospital in NYC, individuals on hyperimmune egg for 30 days reported higher levels of joint comfort.

When certain types of glucosamine are added in combination with hyperimmune egg, joints appear to heal more rapidly and individuals report changes in their quality of life.

 Summary:

When experiencing sprains, strains, or other injuries due to work, sports, or accidents, one might wish to consider the use of complementary ingredients prior to starting on prescription medications.

 

http://www.ncbi.nlm.nih.gov/pubmed/20424410
http://www.ncbi.nlm.nih.gov/pubmed/17112189
www.ncbi.nlm.nih.gov/pubmed?term=Family%20Practice.%202005%3B22%3A118-125
http://www.ncbi.nlm.nih.gov/pubmed/20726384
http://www.ncbi.nlm.nih.gov/pubmed/20737476
http://newsblog.mayoclinic.org/2009/03/20/mayo-clinic-researchers-link-vitamin-d-and-chronic-pain-relief/
http://www.ncbi.nlm.nih.gov/pubmed/22143284
http://www.umm.edu/altmed/articles/omega-3-000316.htm
http://www.ncbi.nlm.nih.gov/pubmed/21067953
http://HyperimmuneEgg.org
www.google.com/patents/about/6706267_Glucosamine_and_egg_for_reducing.html?id=SAwRAAAAEBAJ

css.php