Welcome to Delicate template
Header
Just another WordPress site
Header

Taking an aspirin a day may lower cancer risk.

Individuals took a minimum of 75mg a day of aspirin for 6 years. Twenty years later, these individuals had a 24% lower risk of developing colon cancer in the first place, and a 35% lower risk of death from colon cancer as compared to placebo.

This was especially important because the some of the cancers studied are found in a part of the colon that is not easily seen with current screening tests.

The populations studied were males at cardiovascular risk. Forty percent of the patients were smokers and most were males. Therefore, the effectiveness of aspirin for non-smokers or females is not known.

 “Cross-talk” between cancer and immune cells.

We have long known that there is “cross-talk” between cancer and immune cells. Immune cells affect the growth of cancer cells and cancer cells affect immune cell inflammatory responses.

Inflammation and Cancer.

Studies have shown that patients with inflammatory bowel diseases, such as ulcerative colitis, or Crohn’s disease, are more likely to develop gastrointestinal cancers than the general population.

Inflammation of the gut occurs with the release of inflammatory cytokines and other immune molecules. They have been shown to contribute to the development and growth of gastrointestinal cancers.

Aspirin regulating immune balance.

Thus aspirin may be helping to regulate the body’s inflammatory responses, and helping to keep the body in immune balance, immune homeostasis.

 
www.thelancet.com/journals/lancet/article/PIIS0140-6736(10)62110-1/abstract

www.ncbi.nlm.nih.gov/pmc/articles/PMC2866629/

www.ncbi.nlm.nih.gov/pubmed/18473765

 

Recently, a professional networking site directed me to a short note by Lisa Moreno-Dickinson, President of the stopcaidnow.org. The title of her article was “When Doctors Don’t Know How to Help From Misdiagnosis to No diagnosis … What Can a Parent Do?”.

CAID refers to Childhood Auto Inflammatory Diseases. These genetic disorders usually start in infancy or childhood and are reported to be the result of gene mutations. The periodic attacks of these conditions affect many different organ systems. They are characterized by sudden inflammation and fever onset, and symptoms such as rashes, headache, abdominal, chest, muscle, and joint pains, swollen joints and scrotum.

Much of the science suggests that these conditions are not autoimmune in nature. These individuals have no any significant elevations of autoantibodies, immunoglobulins, large immune molecules that are directed against self, nor activation of specific white blood cells.

Our knowledge of the complexities of the immune system, especially its inflammatory pathways, are still in their infancy as supported by the fact that cancer, colds, infectious, and chronic diseases are rampant.

I respectfully suggest that perhaps autoinflammatory investigators have not used the appropriate assay to find autoimmune responses because a) it does not exist yet, or b) it is difficult to “test for everything”.

A recent report suggests that there is an association between autoinflammatory conditions and mitochondrial health. Mitochondria are the power stations of a cell that provides it with the energy it needs to grow, divide, and “do its job”. They play major roles in healthy aging, degenerative diseases, cancer, and ultimately, cell death. The greater its metabolic or energy requirements, the more mitochondria a cell appears to have. As an example, a muscle cell may have thousands of mitochondria and a skin cell only a few hundred.

Antibodies to mitochondrial proteins have been reported in autism spectrum disorders, which are attributed to inflammatory conditions of the nervous system. Additionally children with severe autism have higher levels of inflammatory cytokines and certain immune molecules than controls.

In Blau’s syndrome, an autoinflammatory disease, symptoms are associated with the skin, joints, and eyes. It is often mistaken for sarcoidosis, a known autoimmune disease of the skin and other organs. Crohn’s disease is an inflammatory autoimmune bowel disease in which the immune system attacks its own digestive lining.

There are two genes, NOD1 and NOD2 that help regulate the production pro-inflammatory cytokines, immune molecules that cause inflammation. Mutations of these genes are found in a number of inflammatory disorders including Blau’s syndrome, sarcoidosis, and inflammatory bowel diseases.

Investigations of the pivotal role of gene regulation of inflammatory responses are underway; however, ways to neutralize the effects of such mutations may be years away.

Parents and clinicians do not have the luxury of just waiting. We know that inappropriate inflammatory responses are occurring in many, so why not determine whether the re-introduction of immune homeostasis, immune balance would make a difference in their quality of life?

 

www.parentsociety.com/parenting/when-doctors-dont-know-what-to-do-or-how-to-help/?goback=%2Egde_151241_member_74525704

www.ncbi.nlm.nih.gov/pmc/articles/PMC2735099/

www.ncbi.nlm.nih.gov/pubmed/16466630

www.ncbi.nlm.nih.gov/pubmed/21453638

www.ncbi.nlm.nih.gov/pubmed/21083929

www.ncbi.nlm.nih.gov/pubmed/21735170

www.ncbi.nlm.nih.gov/pubmed/18368292

www.ncbi.nlm.nih.gov/pubmed/21521652

www.ncbi.nlm.nih.gov/pubmed/21433392

 

The Centers for Disease Control is investigating at least 100 reports of food poisoning, and 18 deaths, due to contaminated cantaloupes. DNA isolated from infected individuals has determined that Listeria is the responsible bacteria. Ninety-eight percent of 93 individuals contacted by monitoring agencies were hospitalized due to their infections. Because of lag times between consumption of these cantaloupes, illness, diagnosis, and laboratory confirmation, more cases are expected to occur.

Five percent of the human population has Listeria in its stool. It is also found in stools of non-human mammals, and birds. This may explain the fact that Listeria is found in water, soil, and animal feed.

Newborns, pregnant women, and individuals with immune disorders such as kidney disease, cancer, diabetes, and HIV/AIDS are at increased risk of becoming ill when infected with Listeria. In 89 % of cases, Listeria pass through the intestinal wall and enter the blood stream. From there, they are carried throughout the body and can end up in the brain, spinal cord, heart, eyes, liver, spleen, lungs, bones, and joints.

Instead of being attacked by immune cells, initially, Listeria hides in immune cells, multiplies, and infects other white blood cells. To stop the infection and return to immune balance, immune homeostasis, the body defends itself by releasing inflammatory and anti-inflammatory cytokines, cell messages, and antibodies, large proteins that mark the bacteria for destruction by inflammatory immune cells.

About half of adults with Listeria infection will be diagnosed with meningitis, an inflammatory condition of the brain and spinal cord. Endocarditis, inflammation of the inner lining of the heart, results in deaths of about 50% of patients.

So, ultimately, excessive inflammation kills infected individuals.

 

www.faqs.org/health/topics/74/Listeriosis.html#ixzz1ZgKQS5E5
www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/100411/index.html#introduction
www.ncbi.nlm.nih.gov/pubmed/21830209
www.ncbi.nlm.nih.gov/pubmed/8251578
www.experts.scival.com/mskcc/grantDetail.asp?t=ep1&id=373762&o_id=3&

Today, three immunologists, Drs. Ralph Steinman*, Jules Hoffman, and Bruce Beutler, won the Nobel Prize in Medicine/Physiology for adding to our scant knowledge of immune system responses to pathogenic microorganisms and cancer cells. Their studies should also provide a better understanding as to how excessive inflammation leads to autoimmunity, attacks on the body’s own healthy tissues.

Two decades ago Dr. Ralph Steinman and his colleague, Dr. Zanvil Alexander Cohn at the Center for Immunology and Immune Diseases, Rockefeller University in New York City, described dendritic cells, specialized immune cells that interact with other immune cells to define how the body will respond to underlying infection and disease.

Dendritic cells are essential to the body’s ability to control immune inflammatory homeostasis. Immune homeostasis is the delicate balance of all immune responses, especially inflammatory and anti-inflammatory responses, that that the body uses to fight disease. Too little inflammation may result in uncontrolled growth of pathogens or cancer cells, whereas too much inflammation, may result in autoimmune conditions such as diabetes, arthritis, lupus, multiple sclerosis, Crohn’s disease, etc.

Part of the role of immune homeostasis is to determine “what comes next” in meeting immune challenges. Dr. Steinman and his colleagues described an important phase of the immune response, “maturation”, which helps the body determine inflammatory and other responses to infection.

Dendritic cells are also important in helping the body maintain immunological “memory”. This assures a more rapid and thorough immune response if is attacked by the same pathogen another time. [Successful immunization depends on immunological memory.]

Dr. Jules Hoffman and his team, described how the immune system first recognizes invading pathogens and then helps trigger the immune system to go into its protective mode.

Dr. Beutler discovered the inflammatory cytokine, tumor necrosis factor, TNF, and a marker on certain bacterial cells that helps the body recognize that it has been infected, so that it can mount an appropriate inflammatory attack.

www.nobelprize.org/nobel_prizes/medicine/laureates/2011/press.pdf

www.rockefeller.edu/labheads/steinman/pdfs/2003-APMI.pdf

www.ncbi.nlm.nih.gov/pubmed/21960036

www.wrvo.fm/post/nobelists-showed-how-immune-defenses-work-and-go-awry

*The Nobel Committee has expressed “deep sadness and regret” at the news that Dr.
Steinman died a few days before its announcement.   Typically, the Nobel Prize is not awarded posthumously, but the Committee has decided to proceed with bestowing the award on Dr. Steinman.

css.php