Anti-Inflammatory Strategies–Achieving Homeostasis
Header image

The act of conceiving, getting pregnant, requires many steps among which are: release of an egg from a follicle (ovulation), fertilization of the egg by sperm, transport of the egg through the Fallopian tubes to the uterus, and attachment to the uterine wall, (implantation).

Each step to becoming pregnant must occur in the right order and requires interaction with hormonal and immune system pathways.

Infertility is the inability to conceive after 1 year of unprotected intercourse. Ten to 15% of reproductive-age couples are unable to conceive. Thirty percent of the time infertility is due to issues with both the man and the woman, or no cause can be determined (idiopathic infertility).

Infertility Issues:
Hormonal and/or immunological imbalances.
Hormonal imbalances affect the way the body interacts with the immune system and affects the ability to conceive.

Seminal fluid, the liquid from male testicles that delivers sperm to the egg contains hormones, cytokines, and other immune messages that interact with the cells lining the female reproductive tract. The factors in seminal fluid prepare the site to receive sperm and set up the proper environment for implantation of the egg. The sequence of events resembles an inflammatory response, but too much inflammation can result in infertility issues.

Pelvic Inflammatory Disease:
Common pelvic inflammatory diseases such as appendicitis and colitis result in inflammation of the abdominal cavity, which in turn may affect the Fallopian tubes and lead to scarring and blockage of the tubes. Since the Fallopian tubes are the pathway by which the egg gets to the uterus for implantation, implantation may not occur. Abdominal surgery, scar tissue, and sexually transmitted infections can also result in inflammatory pelvic disease.

Endometriosis is an inflammatory and hormonal condition that occurs when the tissues lining the uterus grow and spread outside of the uterus. They release blood at menses, the monthly cycle. Thirty-five to fifty percent of infertility cases in women are due to endometriosis.

Poor Egg or Sperm Quality.
Life style decisions such as abuse of alcohol or drugs, smoking, poor diet, obesity, lack of consistent physical activity, and environmental factors may all contribute to poor viability of the egg or sperm.

Smoking contributes greatly to inflammatory responses of the body.

If either partner smokes, the chances of conceiving, via natural or clinical means, are reduced by 33%. Smoking by men lowers their sperm counts and affects the health of their reproductive organs. Women who smoke take longer to conceive compared to non-smokers and are at increased risk of miscarriage, premature birth, and low-birth-weight babies. Even women who do not smoke, but live in homes where they are passively exposed to smokers, may take more than a year longer to become pregnant than women living in smoke-free homes.

Infections and Medical Conditions.
Women and men with sexually transmitted diseases often show no symptoms. Untreated infections can result in excessive inflammatory responses which damage and scar reproductive organs.

Anti-sperm antibodies
Up to 50% of infertility problems in women and men may be associated with the presence of anti-sperm antibodies, large immune proteins that attach to the sperm and trigger immune responses.

In women, antibodies to sperm may attack her partner’s sperm and result in inflammation and damage of vaginal tissues. Over 70% of all men who get a vasectomy develop anti-sperm antibodies. If damaged sperm fertilizes an egg, chances of a miscarriage increase.

Summary:
The reasons behind idiopathic infertility are not understood. It has been my experience that when couples focus on returning to immune balance, to immune homeostasis, they appear to enhance their chances of having children.

Contact Dr. Hellen with the contact form, or  302.265.3870 (ET) or at DrHellen@DrHellenGreenblatt.info.


natural-fertility-info.com/top-10-causes-of-infertility.html
www.jimmunol.org/content/188/5/2445.full.pdf
yourfertility.org.au/for-men/smoking
www.ncbi.nlm.nih.gov/pubmed/25567620
www.ncbi.nlm.nih.gov/pubmed/25547201
www.ncbi.nlm.nih.gov/pubmed/24996040
www.ncbi.nlm.nih.gov/pubmed/24993978
www.ncbi.nlm.nih.gov/pubmed/25592078
www.ncbi.nlm.nih.gov/pubmed/24863647

Nearly every day people tell me that their joints are swollen and stiff, they hurt all over, and that they look and feel older than their chronological age. Most of these individuals have been diagnosed with rheumatoid arthritis.

Arthritis is a sign of a “boosted” immune system with excessive inflammation leading to joint damage. People report pain in areas such as their backs, fingers, hands, wrists, knees, and shoulders.

Rheumatoid arthritis typically affects the joints of the body. However sometimes even before joint symptoms appear, rheumatoid arthritis can involve other parts of the body including the lungs or eyes. Long-term inflammation of the lungs leads to scarring and shortness of breath, fatigue, weakness, and an on-going, chronic dry cough. If the pleura, the tissues around the lungs, become inflamed, fluid buildup may result in fever, pain when taking a breath, and difficulty in breathing.

Inflammation Is Essential for Our Survival:
Clinicians, and most lay people, focus on the harmful aspects of inflammation and try to stop the inflammatory response at all costs. Instead, all that is needed is to control the this immune response. The process of inflammation is normal, protective, and absolutely essential for our survival. Inflammation is the first step to healing after an injury or when the body is gathering its forces to stop an infection. Immune inflammation also helps the body destroy cancer cells before they grow and multiply.

When the body recognizes it has been injured or infected, the immune system releases antibodies and cytokines, smaller proteins that attract different types of immune cells into an area, to help eliminate and destroy threats to the body.

Once healing has started, the amount of inflammation that the body produces must be controlled. The genes that control inflammation have to be “turned off”, down-regulated, so that inflammatory responses are limited.

Arthritis is an Autoimmune Disorder:
Arthritis is one of many autoimmune disorders in which the body mistakenly produces autoantibodies, antibodies against its own tissues that attach to joint linings, and cartilage which acts as a shock absorber. The presence of autoantibodies may trigger immune cells to release inflammatory molecules that cause damage to the joints and other organ systems.

The Effect of Stress and Weight on Arthritis:
There are many factors that contribute to the discomfort experienced by individuals with joint issues. Two of these most recently investigated are: stress and weight.

Stress:
The body increases the amount of inflammation it produces when it is exposes to constant stress and the stress of pain. It becomes part of a vicious cycle. Stress causes inflammation, and inflammation leads to more stress. There is crosstalk between the nervous, hormonal, and immune systems. Changes in one system effects the other system.

Stressed individuals suffering from rheumatoid arthritis produce much higher levels of most cytokines than people without arthritis. Immunologically they respond differently to stress.

Weight Issues:
Overweight and obese patients with rheumatoid arthritis have more pain and respond less well to medication, as compared to normal weight patients. Obesity is an inflammatory disease during which fat cells, especially those concentrated around the inner organs, pump out large numbers of inflammatory molecules. Certain inflammatory proteins are found in high number in the abdominal fat tissue of overweight and obese individuals.

Importance of Immune Balance/Immune Homeostasis:
Immune inflammation is tightly regulated by the body. It consists of a) triggering and maintaining inflammatory responses, and b) producing immune messages that decrease and/or entirely stop the inflammation. Imbalances between the two phases of inflammation results in unchecked inflammation, loss of immune homeostasis, and may result in cell and tissues damage like that experienced in rheumatoid arthritis.

The key is to incorporate lifestyle changes to help the body maintain immune balance.

 Help your body return to immune balance.  Dr. Hellen may be contacted at: 302.265.3870 ET USA, or use the contact form. Thank you.

www.mayoclinic.org/diseases-conditions/arthritis/basics/definition/con-20034095
www.hopkinsmedicine.org/Press_releases/2003/10_17_03.html
www.ncbi.nlm.nih.gov/pubmed/24846478
www.ncbi.nlm.nih.gov/pubmed/24738934
 www.ncbi.nlm.nih.gov/pubmed/24850878
ard.bmj.com/content/early/2014/05/12/annrheumdis-2013-205094
www.fasebj.org/content/27/12/4757

People who are heavy and are not physically active, are at greater risk for conditions such as: increased blood sugar, higher pressures on their artery walls (high blood pressure), increased rate and workload on the heart, stroke, joint problems, sleep disorders, difficulty breathing, and even certain types of  cancer.

There are other posts on this blog relevant to the issue of being overweight or obese, but there is little question that most individuals would feel a lot better if they were only 5 or 10 pounds lighter.

When compared to leaner people, adipose tissue, the fat deposits of obese individuals, have higher numbers of, and larger, fat cells.  These cells produce cytokines, immune factors, that are inflammatory in nature and trigger numerous inflammatory conditions including many mentioned above.

Adipose tissue has “immune-like” properties.  For example, macrophages, white blood cells which alert the body to the presence of invaders, are found in high numbers in fat cell clusters.  Additionally, obese individuals have been shown to have  increased levels of proteins in the blood stream that stimulate inflammation.  Overweight or obese people do not fight infections or heal as well as individuals at more appropriate weights.

 The following hypothesis may have validity.  The immune system may “see” components of adipose tissue as “foreign material” that must be eliminated from the body.  If this scenario is correct, when the body “battles” adipose tissue an autoimmune response is triggered, a response in which the immune system destroys its own tissues, resulting in high levels of inflammation. My hypothesis is supported by the fact that obese individuals produce high levels of autoantibody, antibodies against their own tissues. Rather than resulting from inflammation, these autoantibodies may be the trigger for inflammation.

Muscle cells, like fat cells, secrete cytokines, molecules which help the body regulate inflammatory responses. In response to exercise, many different types of cytokines are produced by muscles and other cells.  Cytokine measurements taken after a marathon demonstrated 100 fold increases of certain cytokines, whereas other cytokines were produced that typically dampen an inflammatory response.

The wide spectrum of immune factors that the body produces in response to physical activity helps the body maintain a steady state of inflammation, an immune balance that helps the body defend itself against infection and helps healing, but not so much that innocent by-stander tissues are damaged.  In fact, studies have shown that individuals that are overweight, nevertheless may be healthy, if they are maintain a level of physical fitness.

The bodies of overweight and obese individuals are consistently exposed to self-generated, inappropriate levels of inflammation.  Helping the body return to a healthy balance of immune responses, a state of homeostasis, will go a long ways towards changing their quality of life.

I would be pleased to hear from you if you are interested in changing your quality of life.  I can be contacted at: drhellen@drhellengreenblatt.info or at:  302.265.3870 USA ET.

 


diabetes.diabetesjournals.org/content/56/6/1517.full

www.ncbi.nlm.nih.gov/pubmed/14679176
www.ncbi.nlm.nih.gov/pubmed/23562157
www.ncbi.nlm.nih.gov/pubmed/22429824
www.ncbi.nlm.nih.gov/pubmed/24761347
www.nature.com/icb/journal/v78/n5/full/icb200073a.html
online.liebertpub.com/doi/abs/10.1089/jmf.1998.1.171
brevets-patents.ic.gc.ca/opic-cipo/cpd/eng/patent/2355168/summary.html?type=number_search

Immune inflammation is the body’s way of protecting itself from infection and cancerous cells. It is also necessary for repairing damaged tissues and eliminating dangerous compounds produced internally or to which we are exposed to externally.

In the 1800’s, Dr. Rudolf Virchow, one of the 19th century’s foremost scientists, observed the presence of inflammatory immune cells in cancerous tissues and suggested that there was a connection between cancer and inflammation.

The right balance of inflammatory responses are needed to fight cancer. Too little of an immune response leaves cancer cells unrecognized and unchallenged. Too much inflammation, or going down a different pathway of immune cell stimulation, may cause the immune system to support tumor growth rather than go into an “attack” mode.

Immune and digestive homeostasis, intestinal balance, depends on the right types and numbers of microbiota (bacteria), the health of the cells that make up the intestinal lining, and the immune cells that are embedded in the intestinal walls.

Over 75-80% of the immune system is represented in the gut. The immune cells produce antibodies (immunoglobulins), cytokines, and other immune factors that help protect the digestive system from pathogens that are introduced into the gut when consuming food and drink.

Bacteria and their secretions interact with intestinal immune cells and vice versa. These bacteria play a major role in the health of the digestive tract. An inappropriate level of intestinal immune responsiveness and incorrect types and numbers of microbiota may contribute to difficulty in maintaining intestinal homeostasis, gut balance. Immune imbalances, a breakdown of any of these elements, lead to problems with the intestine such as inflammatory bowel disease or cancer.

Pre-cancerous polyps often precede the development of colorectal cancer. Several naturally occurring substances have been shown to reduce the size and number of polyps, probably by down-regulation of genes that cause inflammation.

Maintaining immune and digestive homeostasis is imperative for good health. I look forward to having you contact me about any questions you might have on limiting inflammation and returning to homeostasis. I can be contacted at: DrHellen@DrHellenGreenblatt.info or click on: http://drhellengreenblatt.info/contact-dr-hellen/. You may also reach me at: 1.302-265.3870 [USA, Eastern Time].

www.nature.com/nature/journal/v454/n7203/abs/nature07201.html
serpins.med.unc.edu/~fcc/Biology134_Folder/Pathology_213/Inflamm-Cancer.pdf
www.ncbi.nlm.nih.gov/pubmed/22893204
www.ncbi.nlm.nih.gov/pmc/articles/PMC2916138/
www.ncbi.nlm.nih.gov/pubmed/21677746

People often ask how they ended up getting an autoimmune disease, a condition in which their own immune system turns on themselves and destroys healthy by-stander tissues and organs.

My response-the not-yet-proven-hypothesis that molecular mimicry results in autoimmune disease.

Molecular mimicry is a phenomenon in which tissues in the body share a “barcode”, antigenic receptors,  with specific viruses or a bacteria.  The immune system responds by mounting an inflammatory attack against the invading pathogen.  This response targets not only the pathogen, but in addition, tissues that share the same antigenic makeup as the invading microorganism. In short, a terrible error occurs and the body starts destroying itself.

The inflammatory disease rheumatic fever is an excellent example of the possible outcome of molecular mimicry. Damage of heart valves may occur after infection with the bacteria Streptococcus. This development accounts for the panic that many parents experience when their kids come down with “strep throat”.

Antibodies, large unique proteins,  are produced by the immune system when the body is exposed to pathogens.  These specialized proteins attach to the invaders, “flagging” them for destruction by circulating immune cells.  In the case of rheumatic fever, since bacteria and heart valve tissue look alike to the body, antibodies are produced that attach to both surfaces, triggering inflammatory immune responses ultimately resulting in damage to heart valves, as well as death of the bacteria.

The data, controversial, but compelling, is that molecular mimicry, due to viral and bacterial infections,  may also be a trigger for neurological disease.

This concept is reinforced by the fact that multiple sclerosis is a condition in which nerve cells are damaged by uncontrolled levels of inflammation.  Immune cell products mistakenly attack myelin proteins, which make up the protective sheath that “insulates” nerves.  Damage to this covering results in nerve signals becoming intermittent, slowing down, or stopping entirely.  Such nerve damage affects vision, mobility, coordination, balance, bladder, or bowel control.

 A large body of data suggests that infection with herpes virus 6 and/or Epstein-Barr virus triggers  inflammation that leads to nerve cell destruction.  Different viruses and bacteria have been implicated as initiating inflammatory responses in other neurodegenerative diseases as well.

 To understand the role of excessive inflammation in your own condition, enter the condition in combination with the word “inflammation”.  The results you receive will help you understand the importance of achieving immune homeostasis, immune balance of our inflammatory responses.

Let me help you improve your quality of life, naturally. Please contact me at 302.265.3870 (USA ET) or email: DrHellen@DrHellenGreenblatt.info

http://www.bjmp.org/content/role-chronic-bacterial-and-viral-infections-neurodegenerative-neurobehavioral-psychiatric-au
http://www.ncbi.nlm.nih.gov/pubmed/22617826
http://www.ncbi.nlm.nih.gov/pubmed/18193392
http://www.ncbi.nlm.nih.gov/pubmed/9761770
http://www.ncbi.nlm.nih.gov/pubmed/22201827
http://www.ncbi.nlm.nih.gov/pubmed/12557285
http://www.ncbi.nlm.nih.gov/pubmed/21859892

Gut-associated lymphoid tissues are found in the walls of the intestine and contain billions of immune cells.  The white blood cells control the levels and types of bacteria that naturally populate the intestines.  The bacteria help to digest food that provides energy to the body,  and are part of the immune/bacterial ecosystem of the intestine.

 Interestingly, both immune cells and bacteria, protect the intestines from attack by pathogenic microorganisms, and cancer cells, and help heal the intestines when they are damaged.  Cross talk between the bacteria, and immune cells help the intestines maintain homeostasis, balance.  Each keeps the other in check.

 CELIAC DISEASE
Celiac disease is an intestinal, inflammatory, autoimmune (against oneself) disorder.  Individuals with celiac disease suffer from a wide-range of symptoms including diarrhea, fatigue, weight loss, inability to focus, skin and neurological issues, constipation, a feeling of being “bloated”, gas, anemia, headaches, osteoporosis (loss of bone density), and depression. 

 Ingesting grains, such as wheat, rye, and barley, which contain a component of protein called gluten, reportedly stimulate celiac disease.

 The presence of gluten stimulates sensitive immune cells to produce proinflammatory cytokines.  These immune messages drive inflammation, resulting in the destruction of the intestinal wall and symptoms.   Genetic, environmental, dietary, neuroendocrine, and immunological factors all contribute to disease progression.

 Currently, the primary guidance that celiacs get, is to go on a “gluten-free” diet.  Although it may be effective for some people,  such diets are restrictive, expensive, and do not work well for everyone.  In one study, every patient, 100% of those surveyed, in a cohort of 300 individuals, hoped for another option.

 OTHER APPROACHES
I often hear from people with autoimmune challenges such as celiac disease, “it’s genetic”.  Fine, so your genes are partially to blame. Meanwhile, what will you do? Continue to be uncomfortable?  So I ask those with inflammatory issues, why not consider short-term approaches until researchers discover longer-term solutions?  In three words: limit excessive inflammation.

 I like to describe inflammation as a way that the body “burns” out pathogenic microorganisms and cancer cells. The body must produce enough inflammation to protect itself from disease, and help the healing process, but not so much that healthy tissue, for example the intestinal lining, is damaged.

 Nutritional Approaches
Vitamin C and omega-3 fatty acids, from fish oil, inhibit the production of proinflammatory cytokines. (There is however,  evidence that vitamin A increases inflammatory processes.).

 Medical Approaches
Antibodies against specific inflammatory cytokines reduce intestinal injury in celiac disease, and the administration of corticosteroids, along with a gluten-free diet, was reported, in a small clinical trial, to provide benefit to celiac patients.

 Immunological Homeostasis/Balance
Hyperimmune egg, an ingredient that helps the body return to immunological balance, helps to support gastrointestinal health.  Many individuals with digestive issues report daily consumption of hyperimmune egg leads to major differences in their quality of life.

 LIMIT INFLAMMATION FOR BETTER HEALTH
The key to a higher level of quality of life in celiac and other autoimmune and autoinflammatory conditions, is to help the body limit its excessive inflammatory responses.  Removing gluten from one’s diet, using vitamin C, omega-3, corticosteroids, and hyperimmune egg, may contribute to helping the body regulate run-away inflammation.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.


www.cell.com/cell-host-microbe/retrieve/pii/S1931312812000662

 www.medscape.com
 www.nature.com/nature/journal/v471/n7337/full/nature09849.html
www.nature.com/nature/journal/v471/n7337/full/nature09849.html
www.nature.com/nature/journal/v474/n7351/full/nature10208.html
www.ncbi.nlm.nih.gov/pubmed/18667914
www.ncbi.nlm.nih.gov/pubmed/22024540
www.ncbi.nlm.nih.gov/pubmed/22109896
www.ncbi.nlm.nih.gov/pubmed/22606367
www.ncbi.nlm.nih.gov/pubmed?term=morningstar%20hyperimmune%20egg
 www.sciencedaily.com/releases/2008/11/081114185942.htm
www.sciencedaily.com/releases/2012/04/120426105654.htm

 

Alzheimer’s and IVIG Rx
Last week John Gever, Senior Editor, MedPage Today brought attention to the results of a small study presented at the 2012 Alzheimer’s Association International Conference held in Vancouver, British Columbia.  In this study, patients with mild to moderate Alzheimer’s were given antibody preparations, immunoglobulin preparations, which were obtained by pooling plasma from numerous blood donors.  This sterile, medical product, IVIG, intravenous immunoglobulin, consists mostly of immunoglobulins, antibodies,  and is administered intravenously (IV). 

After receiving IVIG twice a month for three years, patient’s ‘ ability to function or think, their mood, or memory did not worsen over the three years. [Untreated Alzheimer’s disease patients typically show measurable declines in 3 to 6 months.]

The FDA, The U.S. Food and Drug Administration, has approved the use of IVIG for only six conditions.  However, it has been used “off-label”, to try and treat about 50 other conditions, including infectious diseases, a wide-range of autoimmune conditions, organ transplant and cancer patients, blood, and neurological conditions to mention a few.

When practitioners are asked how s/he thinks IVIG works, the response is typically, except for infectious diseases, “we are not sure”.

 IVIG Contains Immunoglobulins and Smaller Immune Factors
IVIG contains antibodies to organisms such as streptococcus, hepatitis, measles, polio, etc., that can specifically neutralize infectious agents.  Other immunoglobulins may be directed  against specific immunological factors. 

However, viewing reported results in chronically ill populations, I have always been of the opinion that IVIG also contains cytokines, or cytokine-like immune molecules, with potent immune system-modulating properties, which help the body return to immune homeostasis, immune balance. 

 I suggest that the reason that Alzheimer’s patients receiving IVIG saw a stabilization of their symptoms, is that IVIG limited inflammatory responses and thus slowed the progression of disease.

 Alzheimer’s and Inflammatory Cytokine Levels
This supposition is further supported by the fact that animal models suggest that excessive production of inflammatory cytokines, inflammatory messages, are implicated in Alzheimer’s disease. These animals have a condition similar to human Alzheimer’s, and also have higher levels of inflammatory cytokines in their blood.  When a drug was administered that inhibited the cytokines, there was less damage to nerve cells and neurological outcomes in the animals improved.  

 The scientists suggest that blocking production of high amounts of inflammatory cytokines may be beneficial for any number of brain conditions, such as “Alzheimer’s and Parkinson’s disease, multiple sclerosis (MS), motor neurone disease, frontotemporal dementia, and complications from traumatic brain injury.” (1)

 Immune Homeostasis, Immune Balance the Key to Health
Thus improvements, or at least delay in the onset of Alzheimer’s, or other brain –associated conditions, may be associated with the body achieving immune homeostasis.  A body in inflammatory balance controls the immune system’s  inappropriate inflammatory responses which otherwise may lead to damage of bystander tissues.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.

 


www.medpagetoday.com/MeetingCoverage/AAIC/33780
http://emedicine.medscape.com/article/210367-overview#aw2aab6b3
www.alz.org/aaic/tues_1030amct_ivig_trial.asp
www.jneurosci.org/content/32/30/10201.abstract?sid=349221d1-e12f-411a-80a6-80285ed5db54
www.ncbi.nlm.nih.gov/pubmed/22806462

The immune system is responsible for helping the body heal itself after illness or injury, and to defend the body against attack from pathogens such as viruses, bacteria, and molds, and cancer cells that multiply too rapidly.

In some overly sensitive people however, the immune system may mistakenly view harmless substances, allergens (e.g., peanuts, pollen, dust mites, pet dander), as putting the body at risk of infection.

In response to an attack, the immune system produces large immune molecules called antibodies, immunoglobulins, along with smaller immune co-factors to help in the fight.

Individuals with allergies tend to have higher levels of immunoglobulin E (IgE), a class of antibody. IgE attaches tightly to special immune cells called mast cells. They are found in the skin and linings of the intestine, eyes, and nasal passages. Mast cells play a pivotal role in host defense, inflammation, and tissue repair.

Mast cells are pre-loaded with inflammatory factors. At the body’s next exposure to the allergen, the allergen binds to the IgE, like a key going into a lock, and triggers the release of mast cell biochemicals such as histamine, and small immune factors such as cytokines.

A number of studies suggest that men and women with allergies are at a lower risk of developing glioma, a brain cancer. Gliomas are among the most common and most rapidly growing brain tumors. Men and women with moderately higher levels of IgE, compared to clinically normal individuals, had statistically significant lower probabilities of developing gliomas.

However, as is usually the case in biology, more is not always better. Individuals with significantly elevated levels of IgE were not at a lower risk for developing malignant gliomas.

Look for future postings on the role of inflammation and cancer. Any search will reveal that inflammatory responses play major roles at different stages of tumor development. Since the relationship of inflammation, cancer, and immunological responses are under study, it is best to let the body do what it does best, and that is protect us from illnesses.

To optimize health, immune homeostasis, immune balance, is essential.


www.ncbi.nlm.nih.gov/pubmed/21726235
www.jnci.oxfordjournals.org/content/early/2011/10/17/jnci.djr361.abstract
www.nature.com/nri/journal/v4/n10/fig_tab/nri1460_F1.html
www.ncbi.nlm.nih.gov/pubmed/21978688

Recently, a professional networking site directed me to a short note by Lisa Moreno-Dickinson, President of the stopcaidnow.org. The title of her article was “When Doctors Don’t Know How to Help From Misdiagnosis to No diagnosis … What Can a Parent Do?”.

CAID refers to Childhood Auto Inflammatory Diseases. These genetic disorders usually start in infancy or childhood and are reported to be the result of gene mutations. The periodic attacks of these conditions affect many different organ systems. They are characterized by sudden inflammation and fever onset, and symptoms such as rashes, headache, abdominal, chest, muscle, and joint pains, swollen joints and scrotum.

Much of the science suggests that these conditions are not autoimmune in nature. These individuals have no any significant elevations of autoantibodies, immunoglobulins, large immune molecules that are directed against self, nor activation of specific white blood cells.

Our knowledge of the complexities of the immune system, especially its inflammatory pathways, are still in their infancy as supported by the fact that cancer, colds, infectious, and chronic diseases are rampant.

I respectfully suggest that perhaps autoinflammatory investigators have not used the appropriate assay to find autoimmune responses because a) it does not exist yet, or b) it is difficult to “test for everything”.

A recent report suggests that there is an association between autoinflammatory conditions and mitochondrial health. Mitochondria are the power stations of a cell that provides it with the energy it needs to grow, divide, and “do its job”. They play major roles in healthy aging, degenerative diseases, cancer, and ultimately, cell death. The greater its metabolic or energy requirements, the more mitochondria a cell appears to have. As an example, a muscle cell may have thousands of mitochondria and a skin cell only a few hundred.

Antibodies to mitochondrial proteins have been reported in autism spectrum disorders, which are attributed to inflammatory conditions of the nervous system. Additionally children with severe autism have higher levels of inflammatory cytokines and certain immune molecules than controls.

In Blau’s syndrome, an autoinflammatory disease, symptoms are associated with the skin, joints, and eyes. It is often mistaken for sarcoidosis, a known autoimmune disease of the skin and other organs. Crohn’s disease is an inflammatory autoimmune bowel disease in which the immune system attacks its own digestive lining.

There are two genes, NOD1 and NOD2 that help regulate the production pro-inflammatory cytokines, immune molecules that cause inflammation. Mutations of these genes are found in a number of inflammatory disorders including Blau’s syndrome, sarcoidosis, and inflammatory bowel diseases.

Investigations of the pivotal role of gene regulation of inflammatory responses are underway; however, ways to neutralize the effects of such mutations may be years away.

Parents and clinicians do not have the luxury of just waiting. We know that inappropriate inflammatory responses are occurring in many, so why not determine whether the re-introduction of immune homeostasis, immune balance would make a difference in their quality of life?

 

www.parentsociety.com/parenting/when-doctors-dont-know-what-to-do-or-how-to-help/?goback=%2Egde_151241_member_74525704

www.ncbi.nlm.nih.gov/pmc/articles/PMC2735099/

www.ncbi.nlm.nih.gov/pubmed/16466630

www.ncbi.nlm.nih.gov/pubmed/21453638

www.ncbi.nlm.nih.gov/pubmed/21083929

www.ncbi.nlm.nih.gov/pubmed/21735170

www.ncbi.nlm.nih.gov/pubmed/18368292

www.ncbi.nlm.nih.gov/pubmed/21521652

www.ncbi.nlm.nih.gov/pubmed/21433392

 

The Centers for Disease Control is investigating at least 100 reports of food poisoning, and 18 deaths, due to contaminated cantaloupes. DNA isolated from infected individuals has determined that Listeria is the responsible bacteria. Ninety-eight percent of 93 individuals contacted by monitoring agencies were hospitalized due to their infections. Because of lag times between consumption of these cantaloupes, illness, diagnosis, and laboratory confirmation, more cases are expected to occur.

Five percent of the human population has Listeria in its stool. It is also found in stools of non-human mammals, and birds. This may explain the fact that Listeria is found in water, soil, and animal feed.

Newborns, pregnant women, and individuals with immune disorders such as kidney disease, cancer, diabetes, and HIV/AIDS are at increased risk of becoming ill when infected with Listeria. In 89 % of cases, Listeria pass through the intestinal wall and enter the blood stream. From there, they are carried throughout the body and can end up in the brain, spinal cord, heart, eyes, liver, spleen, lungs, bones, and joints.

Instead of being attacked by immune cells, initially, Listeria hides in immune cells, multiplies, and infects other white blood cells. To stop the infection and return to immune balance, immune homeostasis, the body defends itself by releasing inflammatory and anti-inflammatory cytokines, cell messages, and antibodies, large proteins that mark the bacteria for destruction by inflammatory immune cells.

About half of adults with Listeria infection will be diagnosed with meningitis, an inflammatory condition of the brain and spinal cord. Endocarditis, inflammation of the inner lining of the heart, results in deaths of about 50% of patients.

So, ultimately, excessive inflammation kills infected individuals.

 

www.faqs.org/health/topics/74/Listeriosis.html#ixzz1ZgKQS5E5
www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/100411/index.html#introduction
www.ncbi.nlm.nih.gov/pubmed/21830209
www.ncbi.nlm.nih.gov/pubmed/8251578
www.experts.scival.com/mskcc/grantDetail.asp?t=ep1&id=373762&o_id=3&

css.php