Anti-Inflammatory/Anti-Aging Strategies
Header image

Last week I talked with a young local Asian-American business owner who shared with me that he was “a little fatigued and stressed out”. I suggested that if he took steps to getting his immune system in balance, that since our physical and emotional well-being is dependent on homeostasis, he would feel much better.

He basically replied that, “he spends half the year in Florida, has a lot of friends that are “into” nutrition, he exercises and that he didn’t need any more information, thank you”.

Nothing like a person with an open mind, but unfortunately too many people think in this narrow way.  We all know individuals that eat nutritiously, exercise 5-7 days a week and watch their weight but they still do feel “off”.  Their fingers, elbows or knees hurt, they can’t eat everything they would like, or they have other health issues despite their “great” life style.

Nutritional Recommendations:

The evidence is strong that due to the hundreds of phytonutrients, plant nutrients, in fruits, vegetables, nuts, beans, whole grains and olive oil, that plant-based foods are important for our health. A broad variety of these phytonutrients are suggested since they appear to affect a wide-spectrum of biological functions. The consumption of plant-based foods influences the health of cells, blood pressure, risk of certain cancers, immune, dental, urinary, liver and gut health.

An additional dietary recommendation is to consume fish or fish oil 2-3 times a week for their omega-3 fatty acids. This “good” fat has multiple uses in our body, but the body cannot produced these fats by itself; we need an outside source.

Studies involving hundreds of thousands of people suggest that omega-3s reduce the risk of fatal heart disease, improve the flexibility of blood vessels, lower blood pressure and reduce immune inflammation. [Note: It is controversial whether omega-3 supplements are as beneficial as eating fish; in fact, they may cause certain health issues.]

Role of the Immune System

When the body is threatened by pathogens or cancer cells, or has been injured, the body responds with short-term inflammatory responses, acute inflammation.

Immune cells flood the area to destroy invading foreign organisms or cancer cells, or to start the healing process after trauma. If the body cannot get rid itself of the infection, or if it over-responds with excessive levels of inflammation, the immune response may become chronic, or long-term.

Chronic inflammation is abnormal and damages previously healthy tissues and organs. This sort of unlimited inflammation results in autoimmune diseases, diseases in which the body’s immune system turns on the body.  Conditions such as arthritis, diabetes, lupus, multiple sclerosis, Crohn’s disease, ulcerative colitis, celiac disease, hepatitis and asthma can result from such run-away inflammatory responses.

Knowledgeable individuals know that nutrition plays only an initial role in staying healthy. Good nutrition is the foundation upon which to build health, but it is NOT ENOUGH; it is the immune system that governs one’s health and must be optimized.

The Importance of a Balanced Immune System

Immune balance, immune homeostasis, is tightly regulated by the body. It allows the organism to respond to infection, cancer cells and injury with the right amount of inflammation.  Any imbalances, either too much stimulation, or too little, results in immune disorders and health issues.

The key to good health and healthy aging is keeping the immune system in balance.

    Scales Immune Reponses Partial

Dr.Hellen’s major passion is helping people to enjoy life at its fullest. She may be contacted by using this form, at: drhellen@drhellengreenblatt.info or feel free to call:  302.265.3870 (ET, USA).

  

nutrition.ucdavis.edu/content/infosheets/fact-pro-phytochemical.pdf
www.hsph.harvard.edu/nutritionsource/fish
www.harvardprostateknowledge.org/high-intake-of-omega-3-fats-linked-to-increased-prostate-cancer-risk
www.ncbi.nlm.nih.gov/pubmed/17047219?dopt=Citation
www.ncbi.nlm.nih.gov/pubmed/22893204
www.ncbi.nlm.nih.gov/pubmed/22122770
www.ncbi.nlm.nih.gov/pubmed/27357102

 

One of the major complaints that people have is that “they are always tired”. “They just do not care anymore, they are just too tired.” [Kindly view a post that is relevant to this subject: Depression, Anhedonia and Run-Away Inflammation.]

In the past, scientists thought that there was a blood-brain barrier that “isolated” the brain from the actions of the immune system. They labeled the brain “immune privileged”; because studies suggested that a healthy brain had few, if any inflammatory cells in it. Only when there was a brain infection did scientists think that immune cells migrated into the brain.

Researchers failed to take into account that chronic inflammatory diseases are associated the brain. For example conditions such as inflammatory bowel disease, psoriasis, liver disease, and rheumatoid arthritis may result in a lack of social interest, feelings of being unwell and unremitting fatigue—all which are governed by brain function.

Inflammation is activated when the body encounters pathogens and cancerous cells. The inflammatory response is a primary means by which the body will destroy these threats. Inflammation is basically a controlled “burn”.  Firefighters will often have a “controlled burn” in a forest to get rid of dead trees and limbs.  They strive to keep the fire limited to a specific area.  Sometimes however firefighters are unable to control the fire and acres of forest are burned in error.

Similarly, once immune cells have taken care of a threat to the body, for example cancer cells, pathogens, etc., it is essential that the immune system “turn” down the inflammatory “flame”. Chronic, unnecessary inflammation leads to many autoimmune diseases that destroy their own organs, such as diabetes, Crohn’s bowel disease, multiple sclerosis, and lupus

Inflammation is all about location, location, location. If one has inflammation in the insulin-producing cells that control blood sugar, the person may get diabetes. If their intestines are inflamed they may suffer from Crohn’s.  If there is too much destruction and inflammation of nerve cells, they may suffer from multiple sclerosis.

Let us hypothesize that an individual has two trillion immune white blood cells and that half of these cells are out of control and producing too strong an inflammatory response. This inflammation is destroying previously healthy tissues and organs.  Since the body is always striving to balance inflammation, the other half a trillion of cells are working towards lowering the amount of inflammation and destruction that is going on in the body

Each of these cells is expending a trivial amount of energy trying to accomplish its task, but a tiny amount of energy multiplied by two trillion cells is a great deal of “wasted energy”. Is it any wonder why these people complain of being tired?

Individuals who have been diagnosed with autoimmune conditions have higher levels of inflammatory cytokines, immune messages, than people without disease. In heart failure patients, significant fatigue is associated with poor recovery and a higher risk of death. Patients with high levels of anti-inflammatory cytokines, molecules that decrease inflammation, recover more fully and rapidly than patients with high amounts of inflammatory cytokines. When patients are treated for their heart problems, their cytokine levels begin to resemble the cytokine ratios of healthy individuals, and their energy returns.

In mice with liver inflammation, immune cells from the liver travel to the brain and trigger other specialized immune cells called microglia releasing a biochemical that attracts more inflammatory cells into the brain, which in turn produces more inflammation.

In individuals with multiple sclerosis, a nervous system disease with a major inflammatory component, patients had less fatigue when they took anti-inflammatory medications.

The association of appropriate levels of inflammation with a healthy brain and high energy reserves is clear; the key is being in immunological balance. Once individuals balance inflammatory and anti-inflammatory cells they typically regain their energy and focus.

Aren’t you tired of being tired all the time? Don’t wait any longer. Contact Dr. Hellen to talk bout enhancing your quality of life.  There is no fee for consulting with her for the first 30 minutes.  She may be contacted by using this form or at: 302.265.3870 (ET, USA).

http://www.ncbi.nlm.nih.gov/pubmed/25905315
http://www.ncbi.nlm.nih.gov/pubmed/25905315
www.ncbi.nlm.nih.gov/pubmed/26589194
http://www.the-scientist.com/?articles.view/articleNo/43120/title/Brain-Drain/
http://www.ncbi.nlm.nih.gov/pubmed/26705751
http://www.ncbi.nlm.nih.gov/pubmed/25682012

 

We humans exist in sea of microorganisms. According to the American Society for Microbiology, there are 10 fold the number of bacteria living in and on our bodies as cells that make up our bodies. Wherever our bodies are exposed to the outside world, for example our digestive tracts, skin, mouth, vagina, etc. we find specific varieties of bacteria and other organisms.

The totality of all the bacteria and other microorganisms that populate our bodies is called the microbiome. The microbiome is highly individualized, with the spectrum of bacteria differing from one person to another; much like an individual’s fingerprints. All people display wide variations in the kinds of bacteria that inhabit them. The types and numbers of bacteria in and on our bodies differ depending on our genetic makeup, our diet, and environmental factors.

Immune cells are found throughout the body where they are always on alert defending the body against infection. Inflammation is the primary way that the immune system controls infections and healing, but overactive immune responses can lead to debilitating inflammatory diseases such as atherosclerosis, diabetes, and bowel disorders.

There is considerable “cross-talk” between the microbiome and the immune cells. Microorganisms influence the responses of the immune system, and the immune system in turn affects the populations of the organisms that inhabit us. For example, evidence suggests that certain bacteria in the gut can decrease inflammation in the gut and decrease chronic disease. [Whether the organisms themselves are producing these molecules, or whether they are triggering immune cells to release anti-inflammatory compounds is not clear.]

Celiac Disease and Diabetes:
Individuals with celiac disease are highly sensitive to foods containing gluten, a protein found in barley, rye, and wheat. People with celiac disease have significant quality of life issues such as bloating, diarrhea, and/or constipation.

When the immune cells of celiacs see gluten, they mount an inflammatory response to try to eliminate the gluten from the intestines. The immune cells produce antibodies that attach to the inner surface of the gut and through inflammatory responses cause direct damage of the gut lining. Inflammatory responses against the body’s own tissues lead to autoimmune (against oneself) disease.

Diabetes is also the result of an autoimmune condition. Inflammatory immune cells destroy specialized cells in the pancreas that produce insulin, a hormone needed to control blood sugar.

Individuals with celiac disease have more than digestive issues, since they have almost 2.5 times a greater chance of developing diabetes than those without intestinal problems. Such conditions are associated with antibodies directed against the insulin-producing cells. When Individuals with celiac disease go on a strict gluten-free diet, they produce fewer anti-insulin-antibodies, suggesting that they are producing less of an inflammatory response.

Gluten intake changes the kinds of bacteria found in the gut. Diabetic-prone mice that eat regular mouse chow containing gluten are more likely to get diabetes than diabetic-prone mice on gluten-free chow. In addition, when the gut bacteria are analyzed, the diabetic-prone mice on gluten have the type of bacteria more often associated with inflammation, than the mice not on gluten. Thus, diet affects the responses of the immune cells and the microbiome.

As followers of this blog are aware, in the face of constantly changing external and internal challenges, the immune system of a healthy person makes adjustments to maintain immune balance, immune homeostasis.

One would expect that if inflammatory and autoimmune responses were better controlled by the body, that individuals with celiac disease and diabetes would experience a far better quality of life.

www.ncbi.nlm.nih.gov/pubmed/22699609
www.ncbi.nlm.nih.gov/books/NBK27169
www.ncbi.nlm.nih.gov/pmc/articles/PMC3256734
www.ncbi.nlm.nih.gov/pmc/articles/PMC2575488
www.ncbi.nlm.nih.gov/pubmed/22913724
www.ncbi.nlm.nih.gov/pubmed/24164337
www.ncbi.nlm.nih.gov/pubmed/24041379 www.sciencedaily.com/releases/2013/11/131113182423.htm
www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0078687

People will go to almost any length to get rid of their illnesses.  Last month, a TV news program reported that a financial analyst from New York swallowed 2500 pig whipworm eggs, every two weeks for three months. He was driven to this “solution” because he had been suffering with Crohn’s since being a teenager, had had much of his bowels surgically removed, but still had severe symptoms.  He found that drinking the solution of worm eggs made a major difference in his disease.

Crohn’s disease is an inflammatory disease of the digestive system, typically designated as an autoimmune condition.  In such illnesses, the body’s own immune system mistakenly destroys various portions of its own bowels.

Symptoms can develop gradually or come on all at once.  One may experience only mild amounts of inflammation, or the inflammatory response can be severe enough to cause scarring.  Individuals may go long periods without experiencing any discomfort at all.

When the disease is causing problems, the inflammation can result in intestinal pain and ulcers on the surface of the bowel, diarrhea, bloody stools, and involuntary weight loss and reduce appetite.

Dr. Joel Weinstock, of Tufts Medical Center in Boston, MA is a world authority on inflammatory conditions of the intestine with a clinical specialty in inflammatory bowel diseases such as Crohn’s disease.  He and his colleagues are in the midst of clinical trials to obtain evidence that the ingestion of parasites, such as whipworms will “dampen” inflammatory responses of individuals with Crohn’s.

Exposure to gastrointestinal parasites affects the production of cytokines, immune factors that either trigger, or inhibit, inflammation.  Whipworms can inhibit the production of inflammatory cytokines that contribute to Crohn’s symptoms; they support anti-inflammatory responses in some cases..

Omega-3 fatty acids from fish oil and vitamin D3 are reported to have anti-inflammatory properties and therefore might help those with Crohn’s and other autoimmune diseases. However a recent review of the literature does not support the use of omega-3  to help alleviate symptoms  in Crohn’s patients.

Studies of Vitamin D, a substance that regulates inflammatory and other immune responses, suggest that individuals with higher levels of vitamin D in their blood are at less risk of getting Crohn’s disease.

Additionally, hyperimmune egg has been reported to support bowel health, and with many reporting rapid changes in digestive function.

Instead of drinking a concoction of worms, consuming egg protein from specially-selected hens, hyperimmune egg, makes more sense for digestive support than ingesting worms!

Dr. Hellen looks forward to personally answering your questions.  Send a note to DrHellen@DrHellenGreenblatt.info or click on: http://drhellengreenblatt.info/contact-dr-hellen/.  She can also be reached at: 1.302-265.3870 [USA, Eastern Time].

 

http://www.mayoclinic.com/health/crohns-disease/DS00104/DSECTION=symptoms
http://www.ncbi.nlm.nih.gov/pubmed/22239614
http://www.ncbi.nlm.nih.gov/pubmed/22841731
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646983/
http://www.google.com/patents/US5772999?printsec=abstract#v=onepage&q&f=false

 

Taking an aspirin a day may lower cancer risk.

Individuals took a minimum of 75mg a day of aspirin for 6 years. Twenty years later, these individuals had a 24% lower risk of developing colon cancer in the first place, and a 35% lower risk of death from colon cancer as compared to placebo.

This was especially important because the some of the cancers studied are found in a part of the colon that is not easily seen with current screening tests.

The populations studied were males at cardiovascular risk. Forty percent of the patients were smokers and most were males. Therefore, the effectiveness of aspirin for non-smokers or females is not known.

 “Cross-talk” between cancer and immune cells.

We have long known that there is “cross-talk” between cancer and immune cells. Immune cells affect the growth of cancer cells and cancer cells affect immune cell inflammatory responses.

Inflammation and Cancer.

Studies have shown that patients with inflammatory bowel diseases, such as ulcerative colitis, or Crohn’s disease, are more likely to develop gastrointestinal cancers than the general population.

Inflammation of the gut occurs with the release of inflammatory cytokines and other immune molecules. They have been shown to contribute to the development and growth of gastrointestinal cancers.

Aspirin regulating immune balance.

Thus aspirin may be helping to regulate the body’s inflammatory responses, and helping to keep the body in immune balance, immune homeostasis.

 
www.thelancet.com/journals/lancet/article/PIIS0140-6736(10)62110-1/abstract

www.ncbi.nlm.nih.gov/pmc/articles/PMC2866629/

www.ncbi.nlm.nih.gov/pubmed/18473765

 

Recently, a professional networking site directed me to a short note by Lisa Moreno-Dickinson, President of the stopcaidnow.org. The title of her article was “When Doctors Don’t Know How to Help From Misdiagnosis to No diagnosis … What Can a Parent Do?”.

CAID refers to Childhood Auto Inflammatory Diseases. These genetic disorders usually start in infancy or childhood and are reported to be the result of gene mutations. The periodic attacks of these conditions affect many different organ systems. They are characterized by sudden inflammation and fever onset, and symptoms such as rashes, headache, abdominal, chest, muscle, and joint pains, swollen joints and scrotum.

Much of the science suggests that these conditions are not autoimmune in nature. These individuals have no any significant elevations of autoantibodies, immunoglobulins, large immune molecules that are directed against self, nor activation of specific white blood cells.

Our knowledge of the complexities of the immune system, especially its inflammatory pathways, are still in their infancy as supported by the fact that cancer, colds, infectious, and chronic diseases are rampant.

I respectfully suggest that perhaps autoinflammatory investigators have not used the appropriate assay to find autoimmune responses because a) it does not exist yet, or b) it is difficult to “test for everything”.

A recent report suggests that there is an association between autoinflammatory conditions and mitochondrial health. Mitochondria are the power stations of a cell that provides it with the energy it needs to grow, divide, and “do its job”. They play major roles in healthy aging, degenerative diseases, cancer, and ultimately, cell death. The greater its metabolic or energy requirements, the more mitochondria a cell appears to have. As an example, a muscle cell may have thousands of mitochondria and a skin cell only a few hundred.

Antibodies to mitochondrial proteins have been reported in autism spectrum disorders, which are attributed to inflammatory conditions of the nervous system. Additionally children with severe autism have higher levels of inflammatory cytokines and certain immune molecules than controls.

In Blau’s syndrome, an autoinflammatory disease, symptoms are associated with the skin, joints, and eyes. It is often mistaken for sarcoidosis, a known autoimmune disease of the skin and other organs. Crohn’s disease is an inflammatory autoimmune bowel disease in which the immune system attacks its own digestive lining.

There are two genes, NOD1 and NOD2 that help regulate the production pro-inflammatory cytokines, immune molecules that cause inflammation. Mutations of these genes are found in a number of inflammatory disorders including Blau’s syndrome, sarcoidosis, and inflammatory bowel diseases.

Investigations of the pivotal role of gene regulation of inflammatory responses are underway; however, ways to neutralize the effects of such mutations may be years away.

Parents and clinicians do not have the luxury of just waiting. We know that inappropriate inflammatory responses are occurring in many, so why not determine whether the re-introduction of immune homeostasis, immune balance would make a difference in their quality of life?

 

www.parentsociety.com/parenting/when-doctors-dont-know-what-to-do-or-how-to-help/?goback=%2Egde_151241_member_74525704

www.ncbi.nlm.nih.gov/pmc/articles/PMC2735099/

www.ncbi.nlm.nih.gov/pubmed/16466630

www.ncbi.nlm.nih.gov/pubmed/21453638

www.ncbi.nlm.nih.gov/pubmed/21083929

www.ncbi.nlm.nih.gov/pubmed/21735170

www.ncbi.nlm.nih.gov/pubmed/18368292

www.ncbi.nlm.nih.gov/pubmed/21521652

www.ncbi.nlm.nih.gov/pubmed/21433392

 

css.php