Anti-Inflammatory/Anti-Aging Strategies
Header image

During a recent 5-day cancer conference in Washington, D.C. additional evidence was presented about the fact that inflammation produced by fat cells (adipose tissue) contributes to the growth and spread of tumors.

Dr. M.Kolonin of the University of Texas Health Science Center in Texas has been quoted as saying: “Obesity is the leading preventable cause of cancer in the U.S. Extra body fat not only increases one’s risk of developing cancer, it is also associated with poorer prognosis [outcomes]”… “Ten percent to fifteen percent of cancer deaths may be attributed to obesity”.

Exactly how body fat influences cancer development is still under investigation, but the key appears to be the inflammatory responses of the body to cancer cells and vice versa. Macrophages are one of the major classes of white blood cells responsible for starting the inflammatory response when the body is threatened by cancer cells, and  reducing inflammation when the challenge is over.

Typically, the breast tissue of overweight and obese young women is more inflamed, and has more immune cells, such as macrophages compared to women of healthy weight.  Also cancer in obese women is more difficult to treat than in women at healthier weight.

Metabolic syndrome is associated with a group of factors that puts one at greater risk of having heart disease,diabetes and stroke. If a person has three of the following factors, or are on medication for them, it is called having a metabolic syndrome.  These factors are: excess stomach fat, high blood pressure and triglycerides. low levels of “good” cholesterol (HDL), and high blood sugar.

Image Fat cancer inflammation

In one study of 100 women, half of the women with inflammation of their breasts and early-stage breast cancer also had metabolic syndrome. 

Since obesity contributes to growth of tumors, investigators wondered whether weight loss might reverse the tendency to grow tumors.  In mice, tumors grew more slowly in obese mice that had previously lost weight.   

The body tightly regulates its inflammatory responses by balancing the amount of inflammatory and anti-inflammatory immune factors it produces. Fat cells naturally produce inflammatory molecules.  High amounts of body fat encourages growth of cancer cells.`

Note:

Controlling one’s weight at healthy levels, being physically active for 2.5 hours/week, getting outside every day for a few minutes and using a superior immune-balancing supplement will go a long ways toward helping the body stay in immune balance, stay in immune homeostasis,

Dr.Hellen is available to help you enhance your quality of life to its maximum.  She can be contacted by using this form, contacting her at: drhellen@drhellengreenblatt.info or feel free to call her at:  302.265.3870 (ET, USA).

 

https://meyercancer.weill.cornell.edu/how_obesity_fuels_cancer
www.the-scientist.com/?articles.view/articleNo/49051/title/Fat-s-Influence-on-Cancer/
www.springer.com/us/book/9781461468189
clincancerres.aacrjournals.org/content/early/2016/02/14/1078-0432.CCR-15-2239
www.nhlbi.nih.gov/health/health-topics/topics/ms
journal.frontiersin.org/article/10.3389/fonc.2014.00175/full
www.ncbi.nlm.nih.gov/pubmed/27617172
  

An article in a recent trade publication opened with the following: “Charles couldn’t believe the intensity of the pain – and he had been shot during a tour in Iraq with the Marines. “I was lying in my sleeper and my big toe just went on fire. It was like nothing I had ever experienced. I thought I was going to pass out from the pain,” Charles explained. “My big toe was red, swollen and when I touched it, even a little, it hurt like hell”. Charles’ problem is that he suffers from gout.

 Gout is a type of arthritis that seems to run in families and results from the presence of crystals that form in the body. For example, during digestion and metabolism, the body produces uric acid which is eliminated via urine. Any uric acid that the body cannot excrete accumulates in the blood. For reasons not understood, about 30% of people with high levels of uric acid in their blood form needle-like, sharp urate crystals that end up in their joints and/or other parts of the body.

 Herbert Baraf, MD, Chevy Chase, MD, has a great analogy: “Imagine pouring packets of sugar into a glass of tea; can only hold so much in solution. And sooner or later, the sugar is going to start accumulating on the bottom of the glass.

 People with gout may go weeks or months without an attack, but when it flares up it can be excruciating and last for days. Over time, repeated attacks can eat into bone and cartilage, causing permanent damage to affected joints.

Inflammation

The presence of crystals triggers an intense inflammatory response and painful swelling the result of the body’s attempt to break down the crystals. Typically the crystals end up in joint cartilage, and for unknown reasons, especially the big toe.

gouty toe

In others, crystals settle in kidneys or the urinary tract, impairing their function or forming stones. White blood cells migrate into the joint spaces and fluids and the lubricating membranes that line the joints, the synovial membranes trying to eliminate the crystals. The immune cells attracted to the area release biological factors, cytokines and chemokines, into the surrounding area. This attracts more inflammatory cells with a result of redness, swelling and debilitating pain.

Certain immune factors are typically only in small amount in normal uninflamed joint fluids, but in individuals undergoing a gout attack (flare) the levels of the factors are significantly increased.

 Since inflammation is associated with many diseases, such as cancer, diabetes, obesity and cardiovascular health, it is not surprising to find that patients with gout are at higher risk of these diseases when compared to the general population.

 Summary:

Gout is caused by an overactive immune system using inflammation unsuccessfully to get rid of the crystals that are causing the discomfort.

Returning the immune system to balance, immune homeostasis, can result in a higher level of quality of life (QOL) for people with gout.

For years I have helped people promote  joint, digestive, energy and overall health.   Feel free to contact me DrHellen@DrHellenGreenblatt.info, use the form, or give me a call at 302.265.3870 (ET) and let us talk. Let me help you help yourself, it is  time!

www.nature.com/icb/journal/v88/n1/full/icb200999a.html
fleetowner.com/driver-management-resource-center/truck-drivers-crosshairs-gout
www.nytimes.com/2013/04/27/booming/why-do-i-have-gout.html
rheumatology.oxfordjournals.org/content/44/9/1090.short
www.hopkinsarthritis.org/ask-the-expert/heredity-and-gout/
www.uptodate.com/contents/gout-beyond-the-basics
www.internationaljournalofcardiology.com/article/S0167-5273(15)30342-9/abstract?cc=y=
www.ncbi.nlm.nih.gov/pubmed/28093417
www.ncbi.nlm.nih.gov/pubmed/25332119
www.hindawi.com/journals/mi/2015/680853/

 

Post-traumatic stress disorder (PTSD) occurs in some individuals that are exposed to emotionally disturbing events such as combat, rocket, and terrorist attacks. Individuals that have suffered traumatic brain injury (TBI) or experienced natural disasters and sexual assault are also at higher risk of having this disorder.

Symptoms may include quality of life issues such as explosive outbursts of anger, difficulties in concentrating, being easily startled, feeling constantly “on guard”, expecting a threat to occur at any moment, depression, problems sleeping, avoiding people and circumstances that can trigger unpleasant memories or outbursts, limiting emotional relationships, and avoiding crowded locations.

Up to twenty percent of veterans serving in Iraq and Afghanistan, 10% of Gulf War (Desert Storm), and 30% of Vietnam Veterans have been diagnosed with post-traumatic stress disorder.

PTSD is not only a psychiatric issue. Individuals suffering with PTSD are at higher risk of being physically ill, and at increased risk of death from a multiple of causes.

PTSD is Associated with Inflammatory Responses.
Clinical studies suggest that individuals with post-traumatic stress disorders suffer from chronic low-level inflammation. This is reflected in their greater propensity to have inflammation-associated diseases such as autoimmune, cardiovascular, gastrointestinal, musculoskeletal, and respiratory diseases.

A combination of high blood sugar, cholesterol, and blood pressure, coupled with excess fat around the abdomen (abdominal visceral fat), increases the risk of individuals for stroke, heart disease, and diabetes. This cluster of symptoms, metabolic syndrome, is associated with inflammation and is found in 48% of individuals with post traumatic stress syndrome compared to 25% of controls. Such clinical issues result in patients with PTSD utilizing a greater proportion of medical services and prescription medications.

IL-6 is a cytokine, an immune messenger, which plays a major role in inflammation, helping the body heal after tissue injury, and defending the body from pathogens. C-reactive protein (CRP) is another biological marker that is strongly related to heightened levels of inflammation. Elevated levels of IL-6 and CRP are associated with an increased risk of heart attacks and other cardiovascular events that are inflammatory in nature.

Reports of increased presence of inflammatory cytokines in individuals with PTSD are inconsistent. However, the evidence suggests in military personnel with PTSD or depression, IL-6 levels are higher than found in control subjects, and that the quality of life of these soldiers is poorer as well. Similarly, individuals with PTSD are more likely to have significantly higher amounts of circulating CRP than those not diagnosed with PTSD.

Intermittent explosive disorder is one of the more troubling aspects of some individuals with post traumatic stress disorder. This condition involves repeated episodes of impulsive, angry, verbal outbursts, and violent and aggressive behavior. CRP and IL-6 levels are significantly higher in personnel with intermittent explosive disorder compared with normal or other psychiatric controls, suggesting a direct relationship between inflammation and aggression.

Summary:
Fifty percent of individuals with post traumatic stress syndrome do not seek treatment, and of those that do, only half of these persons will get “minimally adequate” treatment. Until now, the primary treatments for PSTD are psychological counseling and psychiatric medications.

Inflammation is the result of a delicate balance between inflammatory and anti-inflammatory responses, and the body constantly strives to maintain a state of “immune homeostasis”, immune balance.

As in most disease, chronic low-grade inflammation is a likely contributor to post traumatic stress syndrome. If individuals with PTSD better controlled the amount of inflammation produced by their bodies, their quality of life would improve, both emotionally and physically.

 

There is no cost to speak with Dr. Hellen. She can be reached at 1.302-265.3870 ET [USA] or contacted at: drhellen@drhellengreenblatt.info.

 

www.ncbi.nlm.nih.gov/pubmed/23806967
www.nimh.nih.gov/health/topics/post-traumatic-stress-disorder-ptsd/index.shtml
www.ncbi.nlm.nih.gov/pubmed/24157651
archpsyc.jamanetwork.com/article.aspx?articleid=1833091
www.medpagetoday.com/Psychiatry/AnxietyStress/44519
www.cdc.gov/niosh/topics/traumaticincident/
www.ncbi.nlm.nih.gov/pubmed/19780999
www.biomedcentral.com/1471-244X/13/40
www.ncbi.nlm.nih.gov/pubmed/24948537
archpsyc.jamanetwork.com/article.aspx?articleid=1790358
www.ncbi.nlm.nih.gov/pubmed/24559851
www.ncbi.nlm.nih.gov/pubmed/24875221
circ.ahajournals.org/content/101/15/1767.full
www.veteransandptsd.com/PTSD-statistics.html
www.hindawi.com/journals/cherp/2012/490804/

Nearly every day people tell me that their joints are swollen and stiff, they hurt all over, and that they look and feel older than their chronological age. Most of these individuals have been diagnosed with rheumatoid arthritis.

Arthritis is a sign of a “boosted” immune system with excessive inflammation leading to joint damage. People report pain in areas such as their backs, fingers, hands, wrists, knees, and shoulders.

Rheumatoid arthritis typically affects the joints of the body. However sometimes even before joint symptoms appear, rheumatoid arthritis can involve other parts of the body including the lungs or eyes. Long-term inflammation of the lungs leads to scarring and shortness of breath, fatigue, weakness, and an on-going, chronic dry cough. If the pleura, the tissues around the lungs, become inflamed, fluid buildup may result in fever, pain when taking a breath, and difficulty in breathing.

Inflammation Is Essential for Our Survival:
Clinicians, and most lay people, focus on the harmful aspects of inflammation and try to stop the inflammatory response at all costs. Instead, all that is needed is to control the this immune response. The process of inflammation is normal, protective, and absolutely essential for our survival. Inflammation is the first step to healing after an injury or when the body is gathering its forces to stop an infection. Immune inflammation also helps the body destroy cancer cells before they grow and multiply.

When the body recognizes it has been injured or infected, the immune system releases antibodies and cytokines, smaller proteins that attract different types of immune cells into an area, to help eliminate and destroy threats to the body.

Once healing has started, the amount of inflammation that the body produces must be controlled. The genes that control inflammation have to be “turned off”, down-regulated, so that inflammatory responses are limited.

Arthritis is an Autoimmune Disorder:
Arthritis is one of many autoimmune disorders in which the body mistakenly produces autoantibodies, antibodies against its own tissues that attach to joint linings, and cartilage which acts as a shock absorber. The presence of autoantibodies may trigger immune cells to release inflammatory molecules that cause damage to the joints and other organ systems.

The Effect of Stress and Weight on Arthritis:
There are many factors that contribute to the discomfort experienced by individuals with joint issues. Two of these most recently investigated are: stress and weight.

Stress:
The body increases the amount of inflammation it produces when it is exposes to constant stress and the stress of pain. It becomes part of a vicious cycle. Stress causes inflammation, and inflammation leads to more stress. There is crosstalk between the nervous, hormonal, and immune systems. Changes in one system effects the other system.

Stressed individuals suffering from rheumatoid arthritis produce much higher levels of most cytokines than people without arthritis. Immunologically they respond differently to stress.

Weight Issues:
Overweight and obese patients with rheumatoid arthritis have more pain and respond less well to medication, as compared to normal weight patients. Obesity is an inflammatory disease during which fat cells, especially those concentrated around the inner organs, pump out large numbers of inflammatory molecules. Certain inflammatory proteins are found in high number in the abdominal fat tissue of overweight and obese individuals.

Importance of Immune Balance/Immune Homeostasis:
Immune inflammation is tightly regulated by the body. It consists of a) triggering and maintaining inflammatory responses, and b) producing immune messages that decrease and/or entirely stop the inflammation. Imbalances between the two phases of inflammation results in unchecked inflammation, loss of immune homeostasis, and may result in cell and tissues damage like that experienced in rheumatoid arthritis.

The key is to incorporate lifestyle changes to help the body maintain immune balance.

 Help your body return to immune balance.  Dr. Hellen may be contacted at: 302.265.3870 ET USA, or use the contact form. Thank you.

www.mayoclinic.org/diseases-conditions/arthritis/basics/definition/con-20034095
www.hopkinsmedicine.org/Press_releases/2003/10_17_03.html
www.ncbi.nlm.nih.gov/pubmed/24846478
www.ncbi.nlm.nih.gov/pubmed/24738934
 www.ncbi.nlm.nih.gov/pubmed/24850878
ard.bmj.com/content/early/2014/05/12/annrheumdis-2013-205094
www.fasebj.org/content/27/12/4757

People who are heavy and are not physically active, are at greater risk for conditions such as: increased blood sugar, higher pressures on their artery walls (high blood pressure), increased rate and workload on the heart, stroke, joint problems, sleep disorders, difficulty breathing, and even certain types of  cancer.

There are other posts on this blog relevant to the issue of being overweight or obese, but there is little question that most individuals would feel a lot better if they were only 5 or 10 pounds lighter.

When compared to leaner people, adipose tissue, the fat deposits of obese individuals, have higher numbers of, and larger, fat cells.  These cells produce cytokines, immune factors, that are inflammatory in nature and trigger numerous inflammatory conditions including many mentioned above.

Adipose tissue has “immune-like” properties.  For example, macrophages, white blood cells which alert the body to the presence of invaders, are found in high numbers in fat cell clusters.  Additionally, obese individuals have been shown to have  increased levels of proteins in the blood stream that stimulate inflammation.  Overweight or obese people do not fight infections or heal as well as individuals at more appropriate weights.

 The following hypothesis may have validity.  The immune system may “see” components of adipose tissue as “foreign material” that must be eliminated from the body.  If this scenario is correct, when the body “battles” adipose tissue an autoimmune response is triggered, a response in which the immune system destroys its own tissues, resulting in high levels of inflammation. My hypothesis is supported by the fact that obese individuals produce high levels of autoantibody, antibodies against their own tissues. Rather than resulting from inflammation, these autoantibodies may be the trigger for inflammation.

Muscle cells, like fat cells, secrete cytokines, molecules which help the body regulate inflammatory responses. In response to exercise, many different types of cytokines are produced by muscles and other cells.  Cytokine measurements taken after a marathon demonstrated 100 fold increases of certain cytokines, whereas other cytokines were produced that typically dampen an inflammatory response.

The wide spectrum of immune factors that the body produces in response to physical activity helps the body maintain a steady state of inflammation, an immune balance that helps the body defend itself against infection and helps healing, but not so much that innocent by-stander tissues are damaged.  In fact, studies have shown that individuals that are overweight, nevertheless may be healthy, if they are maintain a level of physical fitness.

The bodies of overweight and obese individuals are consistently exposed to self-generated, inappropriate levels of inflammation.  Helping the body return to a healthy balance of immune responses, a state of homeostasis, will go a long ways towards changing their quality of life.

I would be pleased to hear from you if you are interested in changing your quality of life.  I can be contacted at: drhellen@drhellengreenblatt.info or at:  302.265.3870 USA ET.

 


diabetes.diabetesjournals.org/content/56/6/1517.full

www.ncbi.nlm.nih.gov/pubmed/14679176
www.ncbi.nlm.nih.gov/pubmed/23562157
www.ncbi.nlm.nih.gov/pubmed/22429824
www.ncbi.nlm.nih.gov/pubmed/24761347
www.nature.com/icb/journal/v78/n5/full/icb200073a.html
online.liebertpub.com/doi/abs/10.1089/jmf.1998.1.171
brevets-patents.ic.gc.ca/opic-cipo/cpd/eng/patent/2355168/summary.html?type=number_search

Shirley Wang published an article in the WSJ titled “New View of Depression: An Ailment of the Entire Body”. Her lead-in stated: “Scientists are increasingly finding that depression and other psychological disorders can be as much diseases of the body as of the mind. People with long-term psychological stress, depression and post-traumatic stress disorder tend to develop earlier and more serious forms of physical illnesses that usually hit people in older age, such as stroke, dementia, heart disease and diabetes”.

Ms. Wang reported that Dr. Owen Wolkowitz at the University of California, San Francisco thinks of depression as “a systemic illness”, rather than a mental or brain disease. Dr. Wolkowitz found that
“[D]epression is associated with an unusually high rate of aging-related illnesses and early mortality”, or “accelerated aging”. He also points out that individuals who are aging more rapidly and/or are ill, have shorter telomeres than expected.

[Division is essential for most healthy cells. Telomeres are the protective tips of chromosomes that guide the chromosomes during cell division. Every time a cell divides, the telomeres shorten in length. Eventually there is little or no telomere resulting in an inability of the cell to divide efficiently. Eventually the cell dies. Some investigators are of the opinion that the length of telomeres is a predictor of longevity.]

There appears to be a strong association of inflammation with shorter telomeres. Senescent cells, which are unable to divide any longer and have almost non-existent telomeres, produce high concentrations of immune factors, cytokines, that regulate genes that result in inflammation.

Chronic inflammation is found in a myriad of diseases including cardiovascular disease, stroke, diabetes, cancer multiple sclerosis, dementia, as well as depression. Heightened levels of inflammation are found in smokers and the obese. Each pack of cigarettes smoked results in a 18% shortening of telomeres, and the telomeres of obese women are shorter than those of lean women. Using other biomarkers, both smokers and obese individuals have higher levels of inflammation in their bodies than the general population.

Depression results in inflammation and inflammation “feeds” depression. The same cytokines that cause inflammation, pro-inflammatory cytokines, under other circumstances may be anti-inflammatory.
Data from studies demonstrate that depressed individuals have an imbalance of pro- and anti-inflammatory factors.

Some practitioners suggest that depressed patients need to “boost” their immune responses. Instead, “boosting” the immune response, i.e., inflammation, may only exacerbate the disease.

Because of the complexity of immune responses, it is important to let the body find its own “set” point. This is why achieving immune homeostasis, immune balance, is essential for good health.

http://twinsuk.ac.uk/wp-content/uploads/2012/03/Valdes-.lancet.pdf
http://www.ncbi.nlm.nih.gov/pubmed/23136552
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868538/
http://www.ncbi.nlm.nih.gov/pubmed/17705097
http://www.sciencedirect.com/science/article/pii/S0022395609001241
http://drhellengreenblatt.info/2011/09/smoking-inflammation-immune-homeostasis-balance/

A previous posting (1) discussed the relationship between obstructive sleep apnea and inflammation. Evidence was presented, that levels and types of inflammatory cytokines, as well as other blood markers, are different for individuals suffering with sleep apnea as compared to controls.

Steven Park,MD, a renowned sleep apnea expert in NYC, has discussed the contribution of inflammation to sleep apnea and vice versa (2).

Arthritis, Sleep Apnea, and Inflammation
Recently Dr. Park discussed a Mayo Clinic study in which 50% of rheumatoid arthritis patients were diagnosed with sleep apnea, compared to 31% of the rest of the population. Rheumatoid arthritis is a disease of runaway inflammation affecting the joints. (Older individuals are also at greater risk of sleep apnea, and they trend towards higher levels of inflammation.)

Cancer, Sleep Apnea, and Inflammation
Dr. Park has also mentioned a study concluding that sleep issues are associated with a heightened risk of cancer. Moreover, it is known that there is substantial “cross-talk” between cancerous cells and inflammatory immune cells. Cancer patients experiencing high levels of inflammation, have reduced survival rates. Clinicians have suggested that decreasing levels of inflammation in cancer patients may improve their prognoses.

Obesity, Sleep Apnea, Asthma, and Inflammation
As Dr. Park and others have pointed out, there is a strong association between obstructive sleep apnea and obesity. Fat cells, adipocytes, not only serve as fat depots, but also produce cytokines, immune messages, that up regulate or increase, inflammatory responses.

Obesity is also associated with a higher rate and severity of asthma. Overweight individuals with asthma have increased levels of TNF-apha, an “inflammatory” cytokine than healthy controls.

Obstructive Sleep Apnea Symptoms May be Reduced by Physical Activity
One of the most important steps one can take to lower inflammation, besides controlling weight, and eating a healthy diet, is consistent exercise.

This concept is supported by a recent study from Brazil suggesting that physical exercise affects the cytokine makeup of obstructive sleep apnea patients and may reduce inflammation and symptoms of their disease.

Immune Homeostasis, Immune Balance
The key to excellent health, and healthy aging, is to achieve immune homeostasis, immune balance. The immune system needs to produce enough inflammation to meet healing and infectious disease challenges, but it must be a “controlled” burn, so as not to damage innocent, by-stander cells and tissues.

Lifestyle changes are some of the simplest ways to correct immune imbalances and should be considered as part of anyone’s “preventive and treatment” protocol.

www.jrheum.org/content/36/9/1869.short
www.ncbi.nlm.nih.gov/pubmed/22758643
www.ncbi.nlm.nih.gov/pubmed/22377793
www.ncbi.nlm.nih.gov/pubmed/22610391
www.ncbi.nlm.nih.gov/pubmed/21339327
www.ncbi.nlm.nih.gov/pubmed/22720220
www.ncbi.nlm.nih.gov/pubmed/22751736
www.ncbi.nlm.nih.gov/pubmed/22773729
http://drhellengreenblatt.info/2012/02/inflammation-cancer-chemotherapy-and-brain-fog/

Obstructive sleep apnea syndrome  (OSAS) occurs when an individual repeatedly stops breathing, sometimes as many as 1-2 times a minute during their sleep.  It is most frequently associated with heavy snoring, broad swings in heart rate, and, as one would expect, extreme daytime sleepiness.  Those that suffer with sleep apnea are prone to accidents; they are twice as likely to be involved in car crashes as compared to individuals without the condition.

 The relationship between inflammation and sleep apnea is complicated, with not only inflammation of the airways, but  body-wide inflammation as well.

 As with other inflammatory conditions, obstructive sleep apnea is associated with cardiovascular disease, diabetes, and obesity.  Visceral fat, belly fat, is a major predictor of having obstructive sleep apnea syndrome, since fat cells produce large amounts of immune modulating molecules, that trigger inflammation.

 People suffering with sleep apnea have complex imbalances of immune factors, cytokines.  Their levels of immune modulating cytokines, such as tumor necrosis factor and interleukin (IL)-6, are markedly high, as are levels of other inflammatory proteins, including  C-reactive protein (hsCRP). [CRP is a blood protein typically associated with the presence and amount of inflammation in the body.]  Additionally,  hormones that regulate insulin and hunger levels are higher than levels found in those without sleep apnea.

 There is conflicting data about the affect of CPAPs, continuous positive airway pressure breathing devices,  on inflammation. Some studies suggest that the devices help lower the number of inflammatory molecules circulating in the body, other studies suggest that using a CPAP increases inflammation.

 Successfully battling disease, and healing , is determined by inflammatory immune cells and the types and ratios of cytokines they generate.  Restoring balance, immune homeostasis, to the body, helps the body stay healthy, and recover rapidly when in ill health.

emedicine.medscape.com/article/295807-overview
www.sciencedaily.com/releases/2008/02/080218214401.htm
www.ncbi.nlm.nih.gov/pubmed/22515302
www.chestjournal.chestpubs.org/content/127/3/1074.full
www.chestjournal.chestpubs.org/content/126/1/1.long
www.mayoclinic.com/health/sleep-apnea/DS00148
www.ncbi.nlm.nih.gov/pubmed/22408197

The concept of epigenetics was first introduced in the 1940s, and its implications on how we modulate inflammation through its processes are intriguing and exciting.

For most of my scientific career, we were taught that biological processes of the body were pre-determined by genes. It was said that DNA’s message was set-in-stone, and except through mutations which might result in cancer, or mutations and recombinations of genetic material that were handed down from one generation to another, the message encoded by DNA was unchanging.

Accumulating evidence suggests that altering our diet, life style, and environment, significantly influences gene expression; the way that the body translates the DNA message. We can change the affect our genes have on our physiological and emotional well-being.

It never ceases to amaze me that the medical profession writes off conditions such as arthritis, heart disease, cancer, strokes, Alzheimer’s etc. as being the result of “aging”; basically, saying to their patient, “you have to live with it because you are getting old”.

Instead, health practitioners might better focus on the fact that imbalances of inflammatory and anti-inflammatory responses contribute to health issues. Directing the emphasis on life style changes would enable individuals to take steps towards breaking the inflammation cycle, literally affecting the DNA message, and the resulting quality of their lives.

There are simple approaches that help maintain immune balance, immune homeostasis. Two such changes are: limiting the size of fat cells, and exercise. Fat cells, especially around our abdominal area, produce large amounts of pro-inflammatory cytokines, that trigger inappropriate levels of inflammation.

Exercise is a way to neutralize these molecules since contracting our muscles releases potent anti-inflammatory cytokines.

Additionally, the daily consumption of two or more servings of hyperimmune egg can go a long way toward supporting the body’s natural immune-rebalancing attempts.

In the controversy of genes vs. nurture, we now know that it is a combination of both that makes the difference. We can help regulate what our genes “say” by how we choose to live our lives.

www.sciencemag.org/site/feature/plus/sfg/resources/res_epigenetics.xhtml

www.ncbi.nlm.nih.gov/pubmed/22004920.1

target=”_blank”>articles.mercola.com/sites/articles/archive/2012/04/11/epigenetic-vs-determinism.aspx

www.ncbi.nlm.nih.gov/pubmed/22428854

www.ncbi.nlm.nih.gov/pubmed/20388091

 

(Please see prior posting)

ACHIEVING INFLAMMATORY HOMEOSTASIS, IMMUNE BALANCE, NATURALLY

CONTROL INFLAMMATION

Restoring immune inflammatory balance, homeostasis, may reduce diabetic symptoms, help guard against infections, and contribute to overall health by letting the body heal itself. Lifestyle changes, rather than medication, are the best ways to regain immune balance, inflammatory homeostasis.

BECOME PHYSICALLY ACTIVE.

Muscles release anti-inflammatory molecules every time they contract. To help balance the levels of inflammation in the body, try to be physically active at least 150 minutes a week. Walk to the bus at a brisk pace. Stand, instead of sitting. Work faster when in the garden. Exercise while watching TV. Just get moving!

This week’s pre-publication article from the journal, Diabetes Care, reports that diabetics that participated in aerobic and resistance training twice a week were more fit than controls, even when they personally did not have any weight loss. Moreover, another publication this week in the journal, Endocrine, reports that even without weight reductions, exercise by itself helps control blood sugar levels.

GET TO YOUR IDEAL WEIGHT.

Obese individuals are at greater risk of getting diabetes. Fat cells release pro-inflammatory cytokines, messages that result in inflammation. Many diabetic symptoms are reduced, even with minimal weight loss.

Make smarter beverage and food choices. The most recent discussions about foods is to ignore the amount of fat you take in, and instead, concentrate on decreasing your total carbohydrate intake.

 Limit your intake of:

  • Liquid carbohydrates such as sodas, either regular or “diet”, fruit juices, “energy” drinks, beer.
  • Fried foods.
  • Starches, such as corn, white rice, chips, nachos, French fries.
  • White flour such as found in breads, pasta, cakes, desserts.

 Fill half your plate with vegetables and colorful fruit. The following foods are reportedly helpful to diabetics: Brewer’s yeast, broccoli, buckwheat, liver, okra, peas, and spinach.

VITAMIN D MAY PLAY A ROLE IN BALANCING INFLAMMATORY RESPONSES. Recent studies suggest that vitamin D, actually a hormone-like biochemical, is involved in cell growth and immunity. Studies suggest that vitamin D suppresses proinflammatory cytokines and increases anti-inflammatory cytokines. Organ systems such as liver, skin, thymus, small intestines, and pancreas have cells that bind a form of vitamin D. Certain groups of diabetics have low levels of vitamin D.

The body produces its own vitamin D when sun exposure is appropriate. Moderate sun exposure during the summer months, stimulates the production of its vitamin D. In temperate climes, supplementation may be prudent.

 OMEGA-3 FATTY ACIDS. There are suggestions in the scientific literature that diabetics may benefit from consuming omega-3 fish oils. Consume 2-3 servings of fish/week or take supplements.

MODERATE COFFEE CONSUMPTION. Certain compounds in coffee may help decrease inflammation. Moderate consumption of coffee may be helpful to diabetics.

HYPERIMMUNE EGG. Immunologists have shown that consumption of multiple servings/day of hyperimmune egg is a natural way to help the body regain its immune homeostasis.

IN SUMMARY

Important steps that a diabetic can take are to become physically active, control their diet and weight, and are other steps to reduce inappropriate inflammation.


www.ncbi.nlm.nih.gov/pubmed/22399699

www.ncbi.nlm.nih.gov/pubmed/22407494

www.ncbi.nlm.nih.gov/pubmed/20181814

www.ncbi.nlm.nih.gov/pubmed/22404117

www.ncbi.nlm.nih.gov/pubmed/22397028

www.ncbi.nlm.nih.gov/pubmed/19957870

www.ncbi.nlm.nih.gov/pubmed/21593500

www.ncbi.nlm.nih.gov/pubmed/22375372

 

 

css.php