Anti-Inflammatory Strategies–Achieving Homeostasis
Header image

From the time of the ancient Greeks, it has been clear that the mind-gut-body connection influences one’s health; however, only during the last century have we begun to understand why this is the case.

With new tools, scientists can show that there is cross-talk between the brain, the gut and the immune system.  Immune molecules from white blood cells send messages to the brain and the gut and in turn, these organs signal back to the immune system, up-regulating (increase) or down-regulating (decrease) inflammation.

 Image stress stomach immune system brain

©2017 Dr. H. C. Greenblatt

Chronic, long-term stress, affects immune cells by changing their gene activity.  This prepares them to fight infection or trauma and increases inflammation. More immune cells are then enlisted for the fight, resulting in increased inflammation.

Inflammation is necessary for survival, but too much inflammation is linked to heart and autoimmune disease, diabetes, depression, and cancer.  This is why it is essential to maintain the right balance of signals.

Stress responses are part of a vicious cycle in which stress triggers inflammation and inflammation triggers additional stress.

In stressed mice, there are four times the numbers of immune cells than found in non-stressed mice.  Additionally in mice that are stressed 1100 genes are responsible for increasing (up-regulating) inflammation.  These genes in non-stressed mice are not activated.

Similar outcomes are seen in humans under chronic stress. For weeks and months following natural disasters such as earthquakes and hurricanes,  individuals, especially those who have suffered great personal loss, have imbalances of the immune system that affects them both physically and emotionally.

The immune system and its inflammatory responses are in exquisite balance (homeostasis).  The body expands much of its energy maintaining its balance in a steady state.  This may be the reason that people who are stressed out tend to be “tired a lot of the time”.

Let us say that your immune system consists of 30 billion cells and that 15 billion of these cells are in the attack mode with excessive inflammation (up-regulation).  Let us propose that another 15 billion cells are trying to limit the inflammatory response (down-regulation).

A total of 30 billion cells expending a “trivial” amount of energy is a great deal of wasted energy. No wonder people become exhausted when they are not in homeostasis, balance.


The key to reducing stress  is to help the immune system return to homeostasis, to its natural balance.

To better manage stress especially during the holidays:  incorporate an immune support supplement into your daily diet, be physically active 2-2.5 hours/week, spend time outdoors, eat smart, stay within healthy weight limits and remember that you are only one person—be kind to yourself; give yourself a break.

Achieving immune homeostasis will make all the difference in the quality of your emotional and physical well-being. 

Contact Dr. Hellen at:, use the form or give her a call at 302.265.3870 (ET, USA) at no charge to you.

Severe nasal reactions to medications, pollen, dander, foods, fragrances, and other environmental stimuli may occur as people age. These responses, often not a true allergic response, are termed vasomotor or nonallergic rhinitis (1), because they are not due to a typical “allergic” response.

Nonallergic rhinitis (“itis” as in inflammation) is associated with increased irritability, problems in focusing, sleep issues, and daytime sleepiness. Also individuals with rhinitis are at higher risk of getting asthma (2).

Hallmarks of nonallergic rhinitis include inflamed sinuses, drippy, congested nose, chronic sneezing or coughing. Nonallergic rhinitis is seen when inflammation occurs in the sinuses of the face, and the nasal membranes and blood vessels in the nose expand filling the lining of the nose with blood and fluids.

According to the Mayo Clinic specific triggers for nonallergic rhinitis also include (3):

Infections: Viral infections can result in nonallergic rhinitis due to postnasal drip and nasal discharge. Facial pain and sinusitis (inflammation and pressure in the sinus cavities of the face) may also be an unwelcome outcome.

Medications: Overuse of decongestant nasal sprays can cause rhinitis as can medications such as sedatives, beta blockers, antidepressants, oral contraceptives, erectile dysfunction drugs, blood pressure medications, aspirin, ibuprofen, and other nonsteroidal anti-inflammatory drugs (NSAIDs).

Environmental: Strong odors, such as perfumes or cleaning fluids, smoking, secondhand smoke, dust, can become a cause of nonallergic rhinitis.

Foods and beverages: Nonallergic rhinitis may occur when you eat, especially when eating hot or spicy foods. Drinking alcoholic beverages, such as beer and wine, also may cause the membranes inside your nose to swell, leading to nasal congestion.

Weather: Temperature or humidity changes can trigger the membranes inside your nose to swell and cause a runny or stuffy nose. Dr. Rohit Katial, Director of Adult Allergy and Immunology at National Jewish Health, Denver, CO states “Even cold air becomes more problematic as we get older” (1).

Stress and Exercise: Stress and exercise have been shown to induce inflamed sinuses.

Hormonal changes: Changes in hormones due to menstruation or pregnancy, or a autoimmune hormonal conditions.

The majority of inflammatory illnesses result from over production of pro-inflammatory (inflammation enhancing) cytokines, and other immune cellular factors. Our survival on earth depends on the ability of the body to rapidly generate appropriate inflammatory responses to “burn out” pathogens that threaten to destroy us.

The body must be able to modulate the amount of inflammation produced and decrease its intensity as the challenge is met. The key to health is immune homeostasis. We must generate enough of an inflammatory response to meet the threat, but in controlled amounts so that bystander tissues and organs are effected.