Anti-Inflammatory Strategies–Achieving Homeostasis
Header image

Asthma: An Inflammatory Syndrome

Posted on Wednesday, October, 28th, 2015 by Dr. Hellen in Allergies | Chronic Disease | Inflammation

Asthma is an inflammatory condition which affects the lungs in negative ways. It is not a single disease, but a group of symptoms that arise from the abnormal immune responses to environmental triggers.

Asthmatics suffer from limited air flow, difficulties in breathing, heightened sensitivity to particles or toxins in the air, wheezing, coughing, and tightness of the throat and chest.

Asthma can be triggered by allergens, air-borne pollutants, upper respiratory infections (like a cold or the flu), exercise, and nonsteroidal anti-inflammatory drugs, such as acetaminophen.

The cells that line the airways, the epithelium, are the first point of contact when particles are inhaled. Until recently, scientists were unaware that these cells contribute to inflammatory responses within the lungs.

Scientists are busily trying to clarify the role of over 50 different cytokines that are involved in regulating the amount of lung inflammation that asthmatics experience. When challenged with antigens, lung cells produce great numbers of inflammatory cytokines, immune messages. These immune factors regulate the activity of genes that result in inflammation and the body’s efforts to control inflammation.  Inflammatory cytokines increase the levels of inflammation to help the body remove the antigens, while other cytokines dampen excessive immune responses, trying to bring inflammatory responses back to balance.

Structural changes in the airways result from the actions of different classes of inflammatory cells and their immune proteins and biologically active molecules. Lung cells can also release molecules that cause the muscles and blood vessels in the airways to become stiff and narrow.

The lungs become overly sensitive to environmental stimuli triggering the production of excessive levels of mucus, perhaps to help dilute and wash antigens out. These fluids can clog the airways of the lungs making it even more difficult to breathe. The hypersensitivity of the lungs results in a vicious cycle of over-active immune reactions, inflammation, and more mucus production.

10.28.15 Ashma PNG grpahic

 

As always the key to healthy immune support is balance. The body needs to produce enough inflammation to help us heal and protect us from external and internal challenges, but the inflammatory response must be well balanced and controlled.

Dr. Hellen’s major passion in life is helping people get more energy, become more productive, and enjoy life at its fullest. She may be contacted by using this form, drhellen@drhellengreenblatt.info, or at: 302.265.3870 (ET, USA).

www.gluegrant.org/inflammation-asthma.htm
http://jaoa.org/article.aspx?articleid=2094079
http://www.worldallergy.org/professional/allergic_diseases_center/cytokines/
www.aacijournal.com/content/pdf/1710-1492-3-4-114.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21330463
www.nlm.nih.gov/medlineplus/ency/patientinstructions/000036.htm
http://www.jci.org/articles/view/36130
www.ncbi.nlm.nih.gov/pmc/articles/PMC1781697/
http://www.ncbi.nlm.nih.gov/pubmed/26425339

A previous posting (1) discussed the relationship between obstructive sleep apnea and inflammation. Evidence was presented, that levels and types of inflammatory cytokines, as well as other blood markers, are different for individuals suffering with sleep apnea as compared to controls.

Steven Park,MD, a renowned sleep apnea expert in NYC, has discussed the contribution of inflammation to sleep apnea and vice versa (2).

Arthritis, Sleep Apnea, and Inflammation
Recently Dr. Park discussed a Mayo Clinic study in which 50% of rheumatoid arthritis patients were diagnosed with sleep apnea, compared to 31% of the rest of the population. Rheumatoid arthritis is a disease of runaway inflammation affecting the joints. (Older individuals are also at greater risk of sleep apnea, and they trend towards higher levels of inflammation.)

Cancer, Sleep Apnea, and Inflammation
Dr. Park has also mentioned a study concluding that sleep issues are associated with a heightened risk of cancer. Moreover, it is known that there is substantial “cross-talk” between cancerous cells and inflammatory immune cells. Cancer patients experiencing high levels of inflammation, have reduced survival rates. Clinicians have suggested that decreasing levels of inflammation in cancer patients may improve their prognoses.

Obesity, Sleep Apnea, Asthma, and Inflammation
As Dr. Park and others have pointed out, there is a strong association between obstructive sleep apnea and obesity. Fat cells, adipocytes, not only serve as fat depots, but also produce cytokines, immune messages, that up regulate or increase, inflammatory responses.

Obesity is also associated with a higher rate and severity of asthma. Overweight individuals with asthma have increased levels of TNF-apha, an “inflammatory” cytokine than healthy controls.

Obstructive Sleep Apnea Symptoms May be Reduced by Physical Activity
One of the most important steps one can take to lower inflammation, besides controlling weight, and eating a healthy diet, is consistent exercise.

This concept is supported by a recent study from Brazil suggesting that physical exercise affects the cytokine makeup of obstructive sleep apnea patients and may reduce inflammation and symptoms of their disease.

Immune Homeostasis, Immune Balance
The key to excellent health, and healthy aging, is to achieve immune homeostasis, immune balance. The immune system needs to produce enough inflammation to meet healing and infectious disease challenges, but it must be a “controlled” burn, so as not to damage innocent, by-stander cells and tissues.

Lifestyle changes are some of the simplest ways to correct immune imbalances and should be considered as part of anyone’s “preventive and treatment” protocol.

www.jrheum.org/content/36/9/1869.short
www.ncbi.nlm.nih.gov/pubmed/22758643
www.ncbi.nlm.nih.gov/pubmed/22377793
www.ncbi.nlm.nih.gov/pubmed/22610391
www.ncbi.nlm.nih.gov/pubmed/21339327
www.ncbi.nlm.nih.gov/pubmed/22720220
www.ncbi.nlm.nih.gov/pubmed/22751736
www.ncbi.nlm.nih.gov/pubmed/22773729
http://drhellengreenblatt.info/2012/02/inflammation-cancer-chemotherapy-and-brain-fog/

css.php