Welcome to Delicate template
Header
Just another WordPress site
Header

HIV, or the human immunodeficiency virus is a virus that left untreated may lead to acquired immunodeficiency syndrome or AIDS. Unlike some other viruses, even with treatment some people infected with HIV may never eliminate the virus.

In an animal model of HIV, within 24 hours of infection, the virus hitches a ride on immune cells and travels throughout the body. HIV has a special propensity for immune cells, especially T cells. T cells help the body fight infections by activating the production of antibodies (large molecules that neutralize pathogens) and triggers inflammation to kill pathogens or destroy cells containing microbes. Left untreated, HIV infection reduces the numbers of defensive immune cells in the body, leaving HIV infected people (HIV positive) highly vulnerable to infection with other foreign agents (opportunistic infections) and cancers.

DC (dendritic cell)- A type of immune cell that plays a primary role in infections with HIV.
They are important regulators of immune system responses to infection.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033703/

 

From 80-90% of immune cells are found in the walls of the intestines and in the tissues surrounding the intestines. HIV tends to accumulate in these tissues and attack them. These inflammatory responses may weaken the gut barrier resulting in inflammatory digestive issues for HIV positive individuals.

“Inflammation and immune activation accelerate heart disease and stroke, and chronic HIV infection results in both,” says Robert T. Schooley, AIDS researcher and Professor of Medicine in the Infectious Diseases division at the University of California at San Francisco. In addition, this population is at increased risk for certain cancers, gastrointestinal, liver and kidney problems.

There are no cures for HIV, but with proper medical care, the numbers of virus infecting a person and their symptoms may be controlled. Proper medical treatment dramatically improves and prolongs lives. Anti-retroviral therapy (ART or ARV) is used to treat HIV infections.

When the “cocktail” of medications is taken as prescribed, viral loads (the number of viruses in the body) are decreased. These medications can reduce the numbers of HIV down to very low levels (called “undetectable”). However, in some individuals HIV can continue to infect immune cells. [Note: The CDC states that individuals with undetectable virus loads have no risk of sexually transmitting the virus.]

The body must be in immune balance, in immune homeostasis to protect the body from infection or fight infections. The immune system must produce the right ratio of inflammatory cytokines (pro-inflammatory) to anti-inflammatory cytokines. It needs enough inflammation to destroy the pathogen, or in this case HIV, but not so much that healthy tissues are damaged.

A recent study of people that have been treated over many years for HIV reports that HIV positive individuals are at a higher risk of getting diseases common to older individuals. Individuals that were infected in the early years with HIV are now in their 50s and 60s and develop inflammatory-related conditions at a significantly higher rate and lower age than uninfected people of the same age.

Summary:

The key to staying healthy is to remain in immune homeostasis, immune balance—this is true especially for people with chronic infections such as HIV.

 

Please contact Dr. Hellen if you wish to enhance your quality of life-don’t you deserve to do that?  The first 30 minutes of discussion are gratis. Dr. Hellen may be  contacted by using this form or calling:  302.265.3870 (ET-USA).
www.aidsinfonet.org/fact_sheets/view/484
www.cdc.gov/hiv/risk/art/index.html
www.catie.ca/en/treatmentupdate/treatmentupdate-223/inflammation-and-hiv/exploring-hiv-and-inflammation
www.biorxiv.org/content/early/2018/09/14/418012
www.sciencedirect.com/science/article/pii/S0092867400806947

 

From the time of the ancient Greeks, it has been clear that the mind-gut-body connection influences one’s health; however, only during the last century have we begun to understand why this is the case.

With new tools, scientists can show that there is cross-talk between the brain, the gut and the immune system.  Immune molecules from white blood cells send messages to the brain and the gut and in turn, these organs signal back to the immune system, up-regulating (increase) or down-regulating (decrease) inflammation.

 Image stress stomach immune system brain

©2017 Dr. H. C. Greenblatt

Chronic, long-term stress, affects immune cells by changing their gene activity.  This prepares them to fight infection or trauma and increases inflammation. More immune cells are then enlisted for the fight, resulting in increased inflammation.

Inflammation is necessary for survival, but too much inflammation is linked to heart and autoimmune disease, diabetes, depression, and cancer.  This is why it is essential to maintain the right balance of signals.

Stress responses are part of a vicious cycle in which stress triggers inflammation and inflammation triggers additional stress.

In stressed mice, there are four times the numbers of immune cells than found in non-stressed mice.  Additionally in mice that are stressed 1100 genes are responsible for increasing (up-regulating) inflammation.  These genes in non-stressed mice are not activated.

Similar outcomes are seen in humans under chronic stress. For weeks and months following natural disasters such as earthquakes and hurricanes,  individuals, especially those who have suffered great personal loss, have imbalances of the immune system that affects them both physically and emotionally.

The immune system and its inflammatory responses are in exquisite balance (homeostasis).  The body expands much of its energy maintaining its balance in a steady state.  This may be the reason that people who are stressed out tend to be “tired a lot of the time”.

Let us say that your immune system consists of 30 billion cells and that 15 billion of these cells are in the attack mode with excessive inflammation (up-regulation).  Let us propose that another 15 billion cells are trying to limit the inflammatory response (down-regulation).

A total of 30 billion cells expending a “trivial” amount of energy is a great deal of wasted energy. No wonder people become exhausted when they are not in homeostasis, balance.

CONCLUSION:

The key to reducing stress  is to help the immune system return to homeostasis, to its natural balance.

To better manage stress:  incorporate an immune support supplement into your daily diet, be physically active 2-2.5 hours/week, spend time outdoors, eat smart, stay within healthy weight limits and remember that you are only one person—be kind to yourself; give yourself a break.

Achieving immune homeostasis will make all the difference in the quality of your emotional and physical well-being. 

Contact Dr. Hellen at: DrHellen@DrHellenGreenblatt.info, use the form or give her a call at 302.265.3870 (ET, USA) at no charge to you. 



http://www.uppitysciencechick.com/glaser_stress_immune_dysfunction.pdf
www.ncbi.nlm.nih.gov/pubmed/29064542
www.ncbi.nlm.nih.gov/pubmed/27319971
www.ncbi.nlm.nih.gov/pubmed/24608036
www.ncbi.nlm.nih.gov/pubmed/22790082

During a recent 5-day cancer conference in Washington, D.C. additional evidence was presented about the fact that inflammation produced by fat cells (adipose tissue) contributes to the growth and spread of tumors.

Dr. M.Kolonin of the University of Texas Health Science Center in Texas has been quoted as saying: “Obesity is the leading preventable cause of cancer in the U.S. Extra body fat not only increases one’s risk of developing cancer, it is also associated with poorer prognosis [outcomes]”… “Ten percent to fifteen percent of cancer deaths may be attributed to obesity”.

Exactly how body fat influences cancer development is still under investigation, but the key appears to be the inflammatory responses of the body to cancer cells and vice versa. Macrophages are one of the major classes of white blood cells responsible for starting the inflammatory response when the body is threatened by cancer cells, and  reducing inflammation when the challenge is over.

Typically, the breast tissue of overweight and obese young women is more inflamed, and has more immune cells, such as macrophages compared to women of healthy weight.  Also cancer in obese women is more difficult to treat than in women at healthier weight.

Metabolic syndrome is associated with a group of factors that puts one at greater risk of having heart disease,diabetes and stroke. If a person has three of the following factors, or are on medication for them, it is called having a metabolic syndrome.  These factors are: excess stomach fat, high blood pressure and triglycerides. low levels of “good” cholesterol (HDL), and high blood sugar.

Image Fat cancer inflammation

In one study of 100 women, half of the women with inflammation of their breasts and early-stage breast cancer also had metabolic syndrome. 

Since obesity contributes to growth of tumors, investigators wondered whether weight loss might reverse the tendency to grow tumors.  In mice, tumors grew more slowly in obese mice that had previously lost weight.   

The body tightly regulates its inflammatory responses by balancing the amount of inflammatory and anti-inflammatory immune factors it produces. Fat cells naturally produce inflammatory molecules.  High amounts of body fat encourages growth of cancer cells.`

Note:

Controlling one’s weight at healthy levels, being physically active for 2.5 hours/week, getting outside every day for a few minutes and using a superior immune-balancing supplement will go a long ways toward helping the body stay in immune balance, stay in immune homeostasis,

Dr.Hellen is available to help you enhance your quality of life to its maximum.  She can be contacted by using this form, contacting her at: drhellen@drhellengreenblatt.info or feel free to call her at:  302.265.3870 (ET, USA).

 

https://meyercancer.weill.cornell.edu/how_obesity_fuels_cancer
www.the-scientist.com/?articles.view/articleNo/49051/title/Fat-s-Influence-on-Cancer/
www.springer.com/us/book/9781461468189
clincancerres.aacrjournals.org/content/early/2016/02/14/1078-0432.CCR-15-2239
www.nhlbi.nih.gov/health/health-topics/topics/ms
journal.frontiersin.org/article/10.3389/fonc.2014.00175/full
www.ncbi.nlm.nih.gov/pubmed/27617172
  

The second leading cause of death for people under the age of 44 years is suicide. Overall, it is the the tenth leading cause of death in the United States, with veterans comprising 22.2% of this statistic.  Women are three times more likely to attempt suicide, but for every woman who takes her own life, four men will die from their attempt.

Although older adults make up only 12% of the population in the States, they account for 18% of all suicides. These fatal events in the elderly are probably under-reported by 40% with “silent suicides”, dehydration, “accidents”, medication over doses, etc. ending in death.  Additionally, double suicides involving spouses or partners occur most frequently in this population. Since the elderly are the fastest growing segment of the population, these later-life deaths are predicted to result in suicide becoming a major public health issue in the too-near future.

Inflammation and Suicide

C-reactive protein (CRP) is associated with high levels of inflammation found in people with inflammatory disorders, burn and trauma victims, in obese individuals, in people with infections or with cardiovascular disease. People with suicidal thoughts (known as suicidal ideation) or attempts, also exhibit high levels of C-reactive protein compared to people without such behaviors.

Inflammatory factors are triggered during stress and are associated with depression.

image

When compared to patients being treated for psychiatric disorders who are not suicidal, individuals who have contemplated or attempted suicide have increased levels of inflammatory cytokines, immune cell molecules in their blood and/or brain.

The ratio of inflammatory molecules to anti-inflammatory molecules in the body either promotes inflammation or limits it.  A healthy immune system constantly strives to maintain these factors in a delicate balance, in immune homeostasis. 

Importance of Balancing Immune Factors

Imbalances in immune regulators are harmful and lead to disease. Taking the following steps should make a major difference in helping the body and mind return to homeostasis, to its natural, healthy balance:

  • Engage in physical activity at least 30 minutes a day 5 days/week.
  • Add one or more daily servings of a superior immune support supplement to your diet.
  • Maintain a healthy weight.
  • Eat a wide variety of colorful fruits and vegetables.
  • Spend some time outdoors.

For decades I have helped people enhance their quality of life.  I can be contacted at: DrHellen@DrHellenGreenblatt.info, use this form or give me a call at 302.265.3870 (ET USA) and let us talk. Your first 30 minutes are on me!  You’ve tried everyone and everything else, let me help you feel good again, you deserve it!

 
afsp.org/wp-content/uploads/2016/06/2016-National-Facts-Figures.pdf

www.sciencedirect.com/science/article/pii/S1043466615300090

www.ncbi.nlm.nih.gov/pubmed/28211584

www.ncbi.nlm.nih.gov/pubmed/28135675

www.ncbi.nlm.nih.gov/pubmed/27824355

www.biologicalpsychiatryjournal.com/article/S0006-3223(14)00794-X/fulltext

An article in a recent trade publication opened with the following: “Charles couldn’t believe the intensity of the pain – and he had been shot during a tour in Iraq with the Marines. “I was lying in my sleeper and my big toe just went on fire. It was like nothing I had ever experienced. I thought I was going to pass out from the pain,” Charles explained. “My big toe was red, swollen and when I touched it, even a little, it hurt like hell”. Charles’ problem is that he suffers from gout.

 Gout is a type of arthritis that seems to run in families and results from the presence of crystals that form in the body. For example, during digestion and metabolism, the body produces uric acid which is eliminated via urine. Any uric acid that the body cannot excrete accumulates in the blood. For reasons not understood, about 30% of people with high levels of uric acid in their blood form needle-like, sharp urate crystals that end up in their joints and/or other parts of the body.

 Herbert Baraf, MD, Chevy Chase, MD, has a great analogy: “Imagine pouring packets of sugar into a glass of tea; can only hold so much in solution. And sooner or later, the sugar is going to start accumulating on the bottom of the glass.

 People with gout may go weeks or months without an attack, but when it flares up it can be excruciating and last for days. Over time, repeated attacks can eat into bone and cartilage, causing permanent damage to affected joints.

Inflammation

The presence of crystals triggers an intense inflammatory response and painful swelling the result of the body’s attempt to break down the crystals. Typically the crystals end up in joint cartilage, and for unknown reasons, especially the big toe.

gouty toe

In others, crystals settle in kidneys or the urinary tract, impairing their function or forming stones. White blood cells migrate into the joint spaces and fluids and the lubricating membranes that line the joints, the synovial membranes trying to eliminate the crystals. The immune cells attracted to the area release biological factors, cytokines and chemokines, into the surrounding area. This attracts more inflammatory cells with a result of redness, swelling and debilitating pain.

Certain immune factors are typically only in small amount in normal uninflamed joint fluids, but in individuals undergoing a gout attack (flare) the levels of the factors are significantly increased.

 Since inflammation is associated with many diseases, such as cancer, diabetes, obesity and cardiovascular health, it is not surprising to find that patients with gout are at higher risk of these diseases when compared to the general population.

 Summary:

Gout is caused by an overactive immune system using inflammation unsuccessfully to get rid of the crystals that are causing the discomfort.

Returning the immune system to balance, immune homeostasis, can result in a higher level of quality of life (QOL) for people with gout.

For years I have helped people promote  joint, digestive, energy and overall health.   Feel free to contact me DrHellen@DrHellenGreenblatt.info, use the form, or give me a call at 302.265.3870 (ET) and let us talk. Let me help you help yourself, it is  time!

www.nature.com/icb/journal/v88/n1/full/icb200999a.html
fleetowner.com/driver-management-resource-center/truck-drivers-crosshairs-gout
www.nytimes.com/2013/04/27/booming/why-do-i-have-gout.html
rheumatology.oxfordjournals.org/content/44/9/1090.short
www.hopkinsarthritis.org/ask-the-expert/heredity-and-gout/
www.uptodate.com/contents/gout-beyond-the-basics
www.internationaljournalofcardiology.com/article/S0167-5273(15)30342-9/abstract?cc=y=
www.ncbi.nlm.nih.gov/pubmed/28093417
www.ncbi.nlm.nih.gov/pubmed/25332119
www.hindawi.com/journals/mi/2015/680853/

 

As of this writing, the Centers for Disease Control (CDC) in Atlanta is strongly recommending that pregnant woman postpone travel to many countries across the world, including the popular Caribbean islands.  The CDC is taking these steps due to the possibility that these women may become are infected with a mosquito borne virus called Zika.  The World Health Organization (WHO) Director General Dr Margaret Chan, has said that Zika had gone “from a mild threat to one of alarming proportions” and expects the virus to spread through the Americas and affect between three million and four million people.

Eighty percent of individuals who are infected with Zika do not show symptoms.  However, when symptoms do occur, they can last up to a week or so and include fever, rash, pink eye, and joint pain. Some clinicians suggest that Zika virus infection may result in the autoimmune [against oneself] condition,  Guillain-Barre syndrome (GBS).  This is rare disorder where too much inflammation damages the nerve cells, causing muscle weakness and may lead to paralysis.

The greatest concern however right now is that health agencies “strongly suspect” that when a pregnant women is bitten by a mosquito that is carring the virus, that even if she does not experience symptoms, that her offspring may develop brain malformations.

This latest outbreak adds to concerns that infectious diseases are one of the top threats challenging our world—a major topic on the agenda of last week’s World Economic Forum world leader attendees.  Until vaccines or treatments are developed, viral infections such as Zika, Ebola, SARS (severe acute respiratory syndrome), and MERS (Middle East Respiratory Syndrome) remain a threat to the world’s population.

Currently, there are no commercially available vaccines or treatments for Zika.  Until recently the cost to develop a successful vaccine was far greater than what the manufacturers would recoup in vaccine sales.  However, development of a vaccine for Zika will likely now escalate since Zika has spread so widely, infecting over 1.5 million individuals and its being linked to neurological problems, especially in newborns.

In addition to a lack of vaccines and treatments for a multitude of viral diseases, another significant health-care crisis we are facing is treatment of infection by anti-microbial-resistant pathogens. As Dr. Keiji Fukudaof the World Health Organization has stated:  “We really hope to pull the world back from the brink where antibiotics don’t work anymore”.

When bacteria are stressed, for example by a killer antibiotic, their genetic material may change, mutate, so that they can tolerate and become resistant to such compounds.  The bacteria can then replicate easily and outgrow bacterial strains that were not resistant to the antibiotic.

Fifty percent of antibiotic prescriptions written by U.S. physicians are of no benefit to the patient, and when used to fatten livestock and poultry it gives bacteria even more opportunity to acquire antibiotic tolerance.

It is our immune systems that identify, destroy, and remove invading pathogens.   When our body recognizes that it has been invaded by foreign agents, a strong inflammatory responses is triggered to meet the onslaught of the pathogens.  White blood cells accumulate in the area to combat the invaders.  These immune cells release cytokines and other immune messages  recruiting more white blood cells in an attempt to “burn out” the infection. Without a powerful inflammatory response, we cannot limit or survive infections.

In the absence of drugs or treatments that prevent and control the growth of viruses and other microorganism the immune system must be optimized to protect the body against them.

 

www.cdc.gov/mmwr/index.html
www.scientificamerican.com/article/who-extremely-alarmed-by-zika-cases-could-reach-4-million/?WT.mc_id=SA_DD_20160128
www.wsj.com/articles/health-threats-spur-vaccine-hunt-1453337493
ecdc.europa.eu/en/healthtopics/zika_virus_infection/factsheet-health-professionals/Pages/factsheet_health_professionals.aspx
www.vox.com/2016/1/20/10795562/zika-virus-cdc-mosquitoes-birth-defects
www.wsj.com/articles/SB105768561135341800
www.cdc.gov/features/antibioticresistancethreats/
www.cdc.gov/media/dpk/2013/images/untreatable/img2_sm.jpg
www.bbc.com/news/health-35427493

Middle East Respiratory Syndrome (MERS) is a viral disease of the lungs that was first reported in Saudi Arabia in 2012 and has now spread to several other countries, including South Korea and the United States. Genetic material isolated from an individual that died of MERS was identical to genetic material found in one of his own camels. The infected camel possibly infected the owner and is responsible for the death of the man.

 People infected with the virus initially report mild symptoms of a cold, chills, body aches, sore throat, fever, difficulty in breathing, and a cough.  Some individuals report gastrointestinal issues such as diarrhea, nausea, and vomiting.  When symptoms become severe, death may follow failure of the lungs and kidneys.

Most of individuals that have succumbed to infection with MERS suffered with other medical conditions, such as diabetes, cancer, chronic lung conditions, heart, or kidney disease.

MERS and SARS

There is limited scientific information on MERS.  However, the MERS virus is in the same family of viruses as SARS, the virus that causes severe acute respiratory syndrome. Infection with this virus results in severe breathing difficulties which too frequently results in death. (Both the traveling businessman and his World Health Organization physician, Dr. Carlo Urbani who identified the infection as a new disease in the business person, died of the virus.)

 Although there are similarities in symptoms, two major differences between MERS and SARS are: a) MERS progresses to lung failure more rapidly than SARS and b) MERS affects older individuals more than it does younger people. [The high numbers of fatalities from MERS may be related to the older age of infected persons and the fact that individuals with other conditions are more susceptible to respiratory failure].

 Since so little is understood about the disease, people with diabetes, lung, kidney, and immune disorders should take precautions if they are exposed to infected individuals.

The Immune System and Infections

The only part of the body that protects us from infection is our immune system. The role of the immune system is to recognize threats from pathogens, stop, and then up regulate inflammatory responses to destroy the pathogens before they can multiply.

 When the immune system is recognizes invasion by pathogens, immune cells are triggered to produce antibodies and other immune factors, such as cytokines. Cytokines are proteins that help recruit immune cells into an area to help fight the battle, and orchestrate the protective immune responses.In SARS, an over-response of the immune system,  a “cytokine storm” occurs that too often results in the deaths of infected persons.  It is likely that infection with MERS triggers the production of high levels of cytokines, resulting in excessive inflammation and death.

Summary:

People with unbalanced immune systems are at higher risk of having severe symptoms when infected with pathogens.  It is essential that the immune system always be in balance, in homeostasis for optimal protection from disease.

The inflammatory response to infection has to be a controlled, limited response. There must be enough of an immune response to defend the body against disease, but not so great an inflammatory response that the body is harmed.


www.cdc.gov/coronavirus/mers/
www.nejm.org/doi/full/10.1056/NEJMoa1401505
www.nlm.nih.gov/medlineplus/ency/article/007192
www.cdc.gov/coronavirus/mers/
www.nejm.org/doi/full/10.1056/NEJMoa1401505

Parkinson’s is a disease of the nervous system that affects mobility, memory, and cognition.  Individuals may eventually experience rigid muscles, tremors of the limbs and head, loss of muscle control, monotonous speech levels, and a slow, shuffling gait.

Individuals tend to develop the disease as they age. Having a close relative with Parkinson’s disease (PD) increases the likelihood of developing Parkinson’s, with men more than 1.5 times more likely to develop the disease than females.

Although the causes of Parkinson’s disease are not clear, a recent study suggests that individuals with a specific gene are at a higher risk of getting Parkinson’s disease if they were exposed to pyrethroids, a class of chemicals found in the majority of household insecticides.  Exposure of individuals to these pesticides may result in brain tissue inflammation.

Inflammation and Autoimmune Responses

In Parkinson’s disease, the body mounts an inflammatory response against its own brain cells, its dopaminergic neurons. (An immune response against oneself is called an autoimmune response.)

These specialized brain cells produce a biochemical called dopamine with many functions including controlling bodily movements, memory, ability to think, mood, and learning.  The body’s long-lasting inflammatory response against its own nervous cells gradually destroys the dopaminergic neurons resulting in abnormal dopamine levels and brain activity, symptoms associated with Parkinson’s disease.

Microglial cells are specialized immune cells located in the brain. They are considered the “canary in the mine”.  When microglial cells sense a threat, they become “activated” and release immune factors that may, depending on the types and amounts of these molecules, be beneficial or cause damage to nerve cells.

Activated microglial cells are found in large numbers in the brains of Parkinson’s patients, along with high levels of cytokines, biochemical molecules responsible for inflammation.

The brain and spine of the nervous system are cushioned by cerebrospinal fluid. This fluid helps to provide nutrients to the nervous system and removes waste products from the brain.

Individuals with Parkinson’s disease have high levels of immune inflammatory molecules in their spinal fluid.  The more concentrated the molecules, the more likely the person is to severe fatigue, depression, and cognitive impairment.

Summary

Certain genes that control immune system responses are also strongly linked with the development of Parkinson’s disease.

Increasingly, scientific studies suggest that inflammation and autoimmune responses result in Parkinson’s disease.

Helping the body limit out-of-control inflammation, and achieving a more homeostatic, more balanced immune response, may go a long way towards changing the quality of life in individuals with Parkinson’s.

Feel free to contact Dr. Hellen. There is no fee for speaking with her. Dr. Hellen may be contacted by using this form or at: 302.265.3870 (ET).

 www.nature.com/npjparkd/
www.sciencedirect.com/science/article/pii/S1357272504003711
physrev.physiology.org/content/91/2/461
www.ncbi.nlm.nih.gov/pubmed/25757798
www.ncbi.nlm.nih.gov/pubmed/25769314
www.ncbi.nlm.nih.gov/pubmed/22166438
www.ncbi.nlm.nih.gov/pubmed/25215472
www.ncbi.nlm.nih.gov/pubmed/22814707
www.medicalnewstoday.com/articles/265378.php

Borrelia burgdorferi, is a bacterial infection that results from an infected tick, originally from mammals or birds, biting and injecting the microorganism into a human host. Individuals treated early in infection are likely to recover completely; however, delaying treatment may result in long recovery times, or result in disease that will last for years, or for life.

Infection Affects Multiple Organ Systems
Lyme disease can affect any organ or multiple systems including, skin, joints, nervous system, muscles, and skin. Early symptoms are a red, expanding rash, erythema migrans, that often appears at the tick bite site, and flu-like symptoms such as body aches, fever, chills, headache, and fatigue.

Left untreated, unfocused severe pain may, irregular heart beat and other heart problems, chronic inflammation of the joints (especially the knees, i.e., Lyme arthritis), liver inflammation (hepatitis) and eye problems. Unremitting fatigue, memory problems, and brain “fog” may also accompany the disease.

Incomplete recovery from Lyme disease may result in significant neurological problems, including Bell’s palsy (paralysis of one side of the face), weakness or numbness of limbs, impaired muscle movement, and meningitis (inflammation of brain membranes).

Twenty to fifty percent of patients with neurological issues may continue to experience difficulties for years.

Immune Responses to Lyme Infection
The extent of recovery from Lyme disease depends on factors such as the numbers of bacteria initially injected and the types of immune responses triggered by the infection.

As with healing from most infections, recovery from Lyme disease is a highly complex process requiring the correct interplay of inflammatory and anti-inflammatory cytokines, immune regulating molecules. Successful recovery requires a homeostatic, a balanced immune attack with enough inflammation to kill the organism without damaging by-stander cells and organs.

For example, the cytokine interleukin-6 (IL-6) stimulates inflammation but is also, depending on what the body needs, able to decrease inflammatory responses. (IL-6 is also triggers pain receptors and helps nerve cells regenerate.) Transforming growth factor-β (TGF-β) is another cytokine that helps the body control the amount of inflammation produced in response to infection.

Another cytokine, tumor necrosis factor-α (TNF-α) is an inflammatory cytokine that stimulates certain immune cells to find, engulf, and digest invading organisms. Mice susceptible to Lyme disease are unable to manufacture enough of this factor which may account for their susceptibility.

In humans as well, patients that were recovering well had significantly higher levels of tumor necrosis factor-α compared to those with on-going disease. Once again, these responses likely reflect the powerful inflammatory response that helps the body eliminate the disease.

Additionally, recovering infected individuals had higher levels of transforming growth factor than individuals with severe symptoms. These findings suggest that transforming growth factor was successfully limiting the amount of inflammation being produced in response to infection.

Similarly, in mice with Lyme arthritis, animals that did best were those in which high TNF-α cytokine levels helped kill the bacteria, followed by an aggressive IL-6 response that dampened the inflammatory response.

In further support of these findings, patients with rashes (early infection) had high levels of the anti-inflammatory cytokine, transforming growth factor, as compared to those who had more severe neurological involvement.

Conclusion:
The body uses inflammatory responses to protect itself from infection and heal itself. Inflammation helps the body destroy organisms, almost as if the body was “burning” the infection out. However, just like a forest fire, if inflammation is not well controlled the person with Lyme disease may suffer symptoms for years or for life. This is why it is essential for the body to produce a balanced, immune inflammatory response to infection.

 

Contact Dr. Hellen at: 302.265.3870 (ET), DrHellen@DrHellenGreenblatt.info, or by using the contact form: http://drhellengreenblatt.info/contact-dr-hellen.


www.mayoclinic.org/diseases-conditions/lyme-disease/basics/definition/con-20019701
www.ncbi.nlm.nih.gov/pmc/articles/PMC1782772/
www.ncbi.nlm.nih.gov/pubmed/23945160
www.youtube.com/watch?v=xuTlC_0KzGU VIDEO
www.ncbi.nlm.nih.gov/pmc/articles/PMC2991005/

Pancreatic cancer is an aggressive and treatment-resistant cancer that appears to be driven by pancreatitis, inflammation of the pancreas.   Although most people with pancreatitis never go on to develop pancreatic cancer, drinking alcohol in excess, obesity, and particularly smoking, has long been associated with a greater risk of having pancreatic disease.

The Role of The Pancreas
The pancreas is a digestive organ with two main functions.  It produces digestive enzymes to break food down in our intestines, and it contains clusters of cells, Islets of Langerhans, that help the body regulate its blood sugar levels.

Inflammation as a Contributor to Pancreatic Cancer
Inflammation is a complex immune response.  Pancreatic inflammation, mediated by cytokines, immune messengers, up-regulate (increase) inflammation which may lead to pancreatic cancer. Once inflammation is triggered, more immune cells are attracted to the inflamed pancreas and additional cytokines are released that damage pancreatic tissue and attract other damage-causing immune cells.

One of the roles of the immune system is to recognize and destroy cancer cells.  There is a significant amount of “cross-talk” between cancerous cells and immune cells.  On one hand immune cells track down cancer cells in an attempt to destroy them.  They can “turn-on” (up-regulate) or “turn-off” (down-regulate) cancerous cells.  Signals from cancerous cells can result in marked imbalances of immune cells, or make them function in odd ways.

Role of Cytokines in Pancreatic Cancer.
For example, pancreatic tumor cells are able to dampen some of the immune responses of the immune system leaving pancreatic cancer cells to multiply more easily. Cytokines from immune cells can change the environment around tumor cells and act directly on them, triggering their growth and migration to other parts of the pancreas and body. Some cytokines transform cancer cells into becoming resistant to chemotherapy.

Others may act either to trigger inflammation or stop inflammation depending on circumstances. In one study of pancreatic cancer, the most invasive parts of a tumor were found in the midst of heavily inflammatory centers.

Bacteria May Drive Inflammation and Cancer
Interestingly, the studies of our microbiome, the bacteria that inhabit our digestive tracts and other parts of the body, suggest that the bacteria that inhabit us may trigger inflammation, thereby promoting the growth of cancers.

In summary, limiting inappropriate inflammation and achieving a state of immune balance, homeostasis, may be a significant contributor in reducing the risk of pancreatic disease.

Dr. Greenblatt  looks forward to assisting you in reaching your health goals:   http://drhellengreenblatt.info/contact-dr-hellen or 1.302-265.3870 [USA, ET].

 

www.ncbi.nlm.nih.gov/pmc/articles/PMC4145756
scitechnol.com/2324-9293/2324-9293-1-e104.phpwww.ncbi.nlm.nih.gov/pubmed/12020670
www.ncbi.nlm.nih.gov/pubmed/25170202
www.ncbi.nlm.nih.gov/pubmed/24855007
www.nature.com/bjc/journal/v108/n5/full/bjc201324a.html
www.ncbi.nlm.nih.gov/pubmed/24855007

The brain, being the “control center” of the body is cushioned by fluid, and is protected by bone and layers of membranes that support blood vessels that feed the brain.

Concussions
Direct or indirect mechanical impact to the brain may result from sports activities or workplace accidents. These may result in trauma to the brain. Rapid acceleration or deceleration, e.g., motor vehicle accidents or intense changes in pressure, e.g., blast exposures can also lead to brain damage.

The term “concussion” is commonly used to refer to a brain injury resulting from the head being hit with a great deal of force. Shaking the upper body and head violently can also cause brain damage.

Concussions alter the way the brain functions. The effects are usually short-lived, but may include being dazed, headaches, and problems with concentration, memory, balance, and coordination.

Brain injuries may result in loss of consciousness, but since the majority of cases do not end in “blackouts”, concussions often occur without the individual realizing they have had damage. The impact may seem relatively mild, and the individual may appear only to be dazed and with time and rest they may heal properly.

Serious untreated concussions can result in long-term brain damage and may even end in death.
Repetitive head injuries are a major issue especially when an individual sustains additional head injuries before the damage from the prior injury has been completely resolved.

The effects are cumulative. Cumulative sports concussions increase the likelihood of permanent neurologic disability. Complete recovery from an initial trauma can take from 6-18 months, and multiple concussions over time may result in long-term problems, including neurological deterioration, dementia-like symptoms, memory disturbances, behavioral, and personality changes, Parkinsonism, and speech and gait abnormalities.

In a minority of cases, additional trauma to the brain, even occurring from days to weeks following a prior event, can lead to collapse and death within minutes.

How quickly and completely one heals, depends on a number of factors including one’s genetic makeup. (This would be expected since genes determine a cell’s ability to withstand mechanical stress, regenerate, and heal.)

Inflammation and Concussions
For years it was thought that the membranes around the brain acted as a blood-brain barrier which stopped the brain from responding with inflammatory responses when it was confronted by infection. However, it has now been shown that concussions and other brain injuries, or infection or disease, will trigger inflammatory responses.

The types of immune cells found throughout the body are also found in the brain, but additionally, the brain has unique immune cells. When activated, brain-specific microglia and astrocytes, produce inflammatory cytokines that remain localized in the brain.

In response to brain injury, the immune system releases a tidal wave of pro- and anti-inflammatory cytokines, molecules that trigger and/or stop an inflammatory response depending on what is needed.

In small amounts, these cytokines help protect the brain and heal it. However, prolonged exposure to inflammatory cytokines, or too high a level of these proteins, will result in damage that accumulates after injury. High levels of inflammatory cytokines are localized at the injury site, and may be found on the opposite side of the head from the side that was hit.

There is increasing evidence suggesting that much of the neurological damage that occurs after the brain is injured is the result of a delayed inflammatory response that lasts hours, days, or even for months after the injury. This chronic inflammatory response may cause more damage to the brain tissue than the mechanical impact itself.

Immune Homeostasis, Immune Balance is the Key
Unfortunately, pharmaceutical treatments known to reduce inflammation appear to interfere with the brain’s natural repair mechanisms. Therefore it is necessary for the body to control its inflammatory responses. It has to produce enough of a response to help brain tissue heal, but not an overly exaggerated inflammatory response which may cause more damage after injury.

In order for the brain to heal after trauma, the immune system must generate the proper balance, and types, of pro-inflammatory and inflammatory cytokines. For those with brain injuries, maintaining immune homeostasis, immune balance, may be the best way to minimize damage.

 

Dr. Hellen is available at 302.265.3870 for discussion on the role of inflammation and immune homeostasis in our health.  She may be contacted at: drhellen@drhellengreenblatt.info, or use the contact form.  Thank you.

emedicine.medscape.com/article/92189-overview#a0107
www.ncbi.nlm.nih.gov/pmc/articles/PMC2945234/
emedicine.medscape.com/article/92189-overview
www.headcasecompany.com/concussion_info/stats_on_concussions_sports
www.ncbi.nlm.nih.gov/pmc/articles/PMC3520152/

 

This month was the 13th anniversary of the haunting September 11 event that has changed us, our Nation, and the world we thought we knew. It seems like yesterday that these events happened.

Three years ago, I posted my frustration of my inability to get First Responders, and/or their health practitioners, to consider addressing the issue of immune homeostasis, immune balance, to enhance the quality of life of individuals that had put themselves at risk to save others.

 Exposure to Air-Borne Particles

The World Trade Center Health Registry estimates about 410,000 people were exposed to air-borne particles and toxins attempting to rescue survivors and recover the dead, clearing the site, or cleaning the surrounding buildings.

 Despite the fact that early in the World Trade Center (WTC)’ construction, builders abandoned asbestos as a fireproofing material, over 400 tons of asbestos were used in the building of the World Trade Center (WTC). Additionally ”mineral wool”, minerals that were melted and spun into fibers and bound together by cement like components was used in construction.

 Massive amounts of hazardous fiber, asbestos, glass, gypsum, and cement were pulverized into ultra-fine particles when the Towers imploded and collapsed on September 11. Virtually every surface was covered with a fine, white particulate dust, and downwind from the complex, the fine particulate matter settled to a depth of 3 inches or more.

Affected groups of Responders include firefighters, police, health professionals, clean-up crews, construction workers, truck drivers, transit workers, lower Manhattan residents, and office workers.

 Increase Risk of Cancer

Responders were exposed to hundreds, if not thousands, of toxic particulates, dust, and gases at Ground Zero. As many of these are known to be potential carcinogens, it is not surprising that two years ago, 58 different types of cancers were added to a list of diseases with which many World Trade Center responders suffer.

 Overall, First Responders at Ground Zero have a 15% increased cancer risk with a 239% higher risk for thyroid cancers. However, unfortunately, asbestos-related lung cancers such as malignant mesothelioma may not appear for 20-40 more years.

 Signature Illness: PSTD and Respiratory Illness

If having a significant increase in cancer risk was not enough, according to the findings of the Stony Brook [NY] Medicine’s World Trade Center Health Program, as many as 60% of 9/11 World Trade Center responders continue to experience “clinically significant symptoms of post-traumatic stress disorder (PTSD) and … respiratory illness”.

Coughing and breathing problems have been a major issue, even in Responders that were only “moderately” exposed. Additionally individuals with the most exposure were more likely to find that their asthma symptoms became worse.

Benjamin Luft, MD, Medical Director of the Stony Brook Program is of the opinion that “a signature illness” of a WTC Responder is having both PTSD and respiratory problems at the same time.

 Respiratory Difficulties and Inflammation

Inflammatory biomarkers have been monitored in those exposed to WTC dust and smoke. Elevated levels soon after exposure were associated with increased risk of difficulty breathing in the years that followed.

 PTSD and Inflammatory Responses

A few months ago I stated “Clinical studies suggest that individuals with post-traumatic stress disorders suffer from chronic low-level inflammation. This is reflected in their greater propensity to have inflammation-associated diseases such as autoimmune, cardiovascular, gastrointestinal, musculoskeletal, and respiratory diseases.”

 “…individuals with PTSD are more likely to have significantly higher amounts of circulating CRP [an inflammatory marker] than those not diagnosed with PTSD.”

 The Combination of PTSD and Respiratory Issues

To repeat from my previous post,“The immune system mounts an immune, inflammatory response when the body is exposed to pathogens, pollutants, or toxins. The inflammatory cells release immune factors, such as cytokines, cellular messages, that are involved in cell-to-cell communication with the “purpose” of recruiting more inflammatory cells into an area to help eliminate a perceived threat.”

 “Pollutants and chemicals … trigger airway inflammation and increase mucous production. Other immune molecules cause narrowing of airways resulting in the contraction of the muscles lining the airways. The combination of inflammation and increased mucous makes it difficult for air to enter or leave the lungs and can result in breathing issues.”

“Additionally, lungs that do not function properly, are ideal for the multiplication of molds, bacteria, and viruses. The lungs continue their struggle to eliminate pollutants and pathogens, resulting in a chronic, persistent, dry cough and worsened lung function.”

 A Plea to Readers

I am convinced that immune inflammatory imbalances contribute in large portion to the reason that that First Responders experience so many health challenges.

 It is my heart-felt hope and expectation that helping individuals return to immune homeostasis, immune balance, may be the key to changing their quality of life. Despite numerous attempts and avenues, I have been unable to make reliable contact with decision makers or Responders.   I hope that you will forward my note to individuals that are still suffering the consequences of serving others.

 I can be reached at: DrHellen@DrHellenGreenblatt.info or at 302.265.3870. Thank you.

www.asbestos.com/world-trade-center/
sb.cc.stonybrook.edu/news/general/140910wtc.php
911research.wtc7.net/wtc/evidence/dust.html
www.sciencedaily.com/releases/2014/09/140910185910.htm
www.health.ny.gov/environmental/investigations/wtc/health_studies/responders.htm
www.cnn.com/2013/09/11/health/911-cancer-treatment/
www.thelancet.com/themed-911
www.mesothelioma.com/blog/authors/barbara/help-running-out-for-911-first-responders.htm
www.ncbi.nlm.nih.gov/pubmed/21998260

During the 1970′s and 80′s, the saga of the “boy in the bubble” was followed with great interest. David Vetter, a young Texas boy had severe combined immunodeficiency (SCID), a disease caused by life-threatening defects in his immune system. His immune system was unable to protect him from infection, resulting in the necessity of having to live in a germ-free, isolation containment center designed by NASA engineers. He lived in this plastic bubble from the time of this birth until he died at the age of 12 following a failed bone marrow transplant.

The containment center was supposed to keep David separated from any pathogens that might harm him. Unfortunately, it was likely that it was a virus-contaminated bone marrow transplant that resulted in lymphoma, an immune system cancer, which ended David’s life.

Living in a sea of pathogens, a functional immune system is essential for our survival. Inflammation is among the first steps the body takes to heal after injury or disease and it uses immune inflammatory responses to protect us from cancer cells and pathogens. But too much inflammation is as serious a problem as too little inflammation. The body constantly struggles to limit the amount of inflammation that it produces, with uncontrollable amounts of inflammation acting like as if it was an out-of-control forest fire, destroying healthy cells in its path.

The four letters “itis” indicate an inflammatory condition. Typically, the name of the disease depends on the location in which the inflammation occurs. For example, arthritis (inflammation of the joints), colitis (inflammation of the intestinal tract, the colon), dermatitis (inflammation of the skin), nephritis (inflammation of the kidney), pancreatitis (inflammation of the pancreas), and uveitis (inflammation of a part of the eye).

Most immune cells do not have specialized names, however some organs have specialized inflammatory immune cells that detect infection and help resolve infection or injury to the body. Kupffer cells are most often associated with the liver. Microglia are associated with the brain and are involved in repairing damaged brain tissue and protecting the brain against disease. Dust cells, also known as alveolar macrophages, carry out similar functions in the lungs.

Inflammation is like real estate: location, location, location. The process of inflammation is substantially the same no matter where in the body the inflammation occurs. The intensity of the inflammatory response is determined by a balance between pro-inflammatory (molecules that cause inflammation) and anti-inflammatory (molecules that dampen inflammation) cytokines, immune messages that are released by immune cells.

The key to healthy immune responses is to be in immune homeostasis, immune balance. We must maintain the balance of enough inflammation to defend ourselves from pathogens, stimulate repair, and healing against the need to limit the amount of inflammation that too often leads to inflammatory diseases.

Contact Dr. Hellen for guidance in utilizing natural means to help the body return to immune homeostasis. She may be reached at:  DrHellen@DrHellenGreenblatt.info or or at 302.265.3870.

www.ncbi.nlm.nih.gov/books/NBK22254/
www.ncbi.nlm.nih.gov/pubmed/23720329
www.thedoctorwillseeyounow.com/content/mind/art3792.html?getPage=2
www.hindawi.com/journals/cherp/2012/490804/

 

Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, is a severe, often fatal illness in humans. As of this post, the virus has spread through many African nations, and is the worst Ebola outbreak every recorded. The virus has infected over 1200 people and abuot 60% of these individuals have died from the disease.

Health practitioners have put themselves at great risk caring for those who have become infected. According to the BBC, one hundred health workers have been affected and half of them have died. At least three high-profile physicians in the forefront of care have succumbed to the virus, and three nurses who worked in the same treatment center as one of the physicians, are believed to have died from the virus.

Two Americans working to battle Ebola in Liberia, one a physician, have tested positive for the virus and are undergoing intensive treatment and workers from Doctors without Borders and the Red Cross are “overwhelmed” for the virus that has no cure.

Depending on the type of Ebola virus, up to 90% of those infected can die a rapid and difficult death. The onset of symptoms may be characterized by a sudden spiking fever, headache, joint, muscle, and stomach pain, diarrhea, vomiting, and in some cases, uncontrolled internal and external bleeding. Infected individuals die from failure of multiple organs in the body such as the nervous system, liver, and kidneys.

The disease is characterized by abnormal immune responses in which the Ebola viruses appear to evade attack of immune cells; dramatic immune imbalances occur in response to infection. There is evidence that the immune system responds with a “cytokine” storm during which certain immune cells “dump” large amounts of pro-inflammatory molecules, cytokines, into the body. Other biological compounds are released as well that contribute to the confused immune response.

Additionally, specialized cells produce insufficient amount of anti-viral cytokines, while at the same time, there is a significant increase in death of other types of immune cells. Scientists at the National Institute of Allergy and Infectious Diseases call this “a mixed anti-inflammatory response syndrome (MARS)”, and suggest that this “catastrophic uncontrolled immunological status contributes to the development of fatal hemorrhagic fever”.

Perhaps some of the symptoms that patients experience are due to autoimmune responses against individual classes of lymphocytes. This would account for the loss of certain immune cells, such as CD4 and CD8 cells. If they were available in higher numbers, they might be able to help the body fight the infection.

Many immunological factors contribute to Ebola virus fatalities. It is my contention that if  individuals were able to achieve immune homeostasis, immune balance, they would be better equipped to mount  controlled inflammatory responses which might help control the course of the disease.

 www.cdc.gov/vhf/ebola/pdf/fact-sheet.pdf
www.cdc.gov/media/releases/2014/t0728-ebola.html
www.who.int/mediacentre/factsheets/fs103/en/
www.nasw.org/users/mslong/2010/2010_09/Ebola.htm
www.vox.com/2014/7/23/5930311/ebola-virus-disease-outbreak-africa-facts-guinea?utm_medium=social&utm_source=facebook&utm_campaign=voxdotcom&utm_content=Sunday
www.ncbi.nlm.nih.gov/pubmed/20957152
www.ncbi.nlm.nih.gov/pubmed/21987781
www.ncbi.nlm.nih.gov/pmc/articles/PMC368745/

Post-traumatic stress disorder (PTSD) occurs in some individuals that are exposed to emotionally disturbing events such as combat, rocket, and terrorist attacks. Individuals that have suffered traumatic brain injury (TBI) or experienced natural disasters and sexual assault are also at higher risk of having this disorder.

Symptoms may include quality of life issues such as explosive outbursts of anger, difficulties in concentrating, being easily startled, feeling constantly “on guard”, expecting a threat to occur at any moment, depression, problems sleeping, avoiding people and circumstances that can trigger unpleasant memories or outbursts, limiting emotional relationships, and avoiding crowded locations.

Up to twenty percent of veterans serving in Iraq and Afghanistan, 10% of Gulf War (Desert Storm), and 30% of Vietnam Veterans have been diagnosed with post-traumatic stress disorder.

PTSD is not only a psychiatric issue. Individuals suffering with PTSD are at higher risk of being physically ill, and at increased risk of death from a multiple of causes.

PTSD is Associated with Inflammatory Responses.
Clinical studies suggest that individuals with post-traumatic stress disorders suffer from chronic low-level inflammation. This is reflected in their greater propensity to have inflammation-associated diseases such as autoimmune, cardiovascular, gastrointestinal, musculoskeletal, and respiratory diseases.

A combination of high blood sugar, cholesterol, and blood pressure, coupled with excess fat around the abdomen (abdominal visceral fat), increases the risk of individuals for stroke, heart disease, and diabetes. This cluster of symptoms, metabolic syndrome, is associated with inflammation and is found in 48% of individuals with post traumatic stress syndrome compared to 25% of controls. Such clinical issues result in patients with PTSD utilizing a greater proportion of medical services and prescription medications.

IL-6 is a cytokine, an immune messenger, which plays a major role in inflammation, helping the body heal after tissue injury, and defending the body from pathogens. C-reactive protein (CRP) is another biological marker that is strongly related to heightened levels of inflammation. Elevated levels of IL-6 and CRP are associated with an increased risk of heart attacks and other cardiovascular events that are inflammatory in nature.

Reports of increased presence of inflammatory cytokines in individuals with PTSD are inconsistent. However, the evidence suggests in military personnel with PTSD or depression, IL-6 levels are higher than found in control subjects, and that the quality of life of these soldiers is poorer as well. Similarly, individuals with PTSD are more likely to have significantly higher amounts of circulating CRP than those not diagnosed with PTSD.

Intermittent explosive disorder is one of the more troubling aspects of some individuals with post traumatic stress disorder. This condition involves repeated episodes of impulsive, angry, verbal outbursts, and violent and aggressive behavior. CRP and IL-6 levels are significantly higher in personnel with intermittent explosive disorder compared with normal or other psychiatric controls, suggesting a direct relationship between inflammation and aggression.

Summary:
Fifty percent of individuals with post traumatic stress syndrome do not seek treatment, and of those that do, only half of these persons will get “minimally adequate” treatment. Until now, the primary treatments for PSTD are psychological counseling and psychiatric medications.

Inflammation is the result of a delicate balance between inflammatory and anti-inflammatory responses, and the body constantly strives to maintain a state of “immune homeostasis”, immune balance.

As in most disease, chronic low-grade inflammation is a likely contributor to post traumatic stress syndrome. If individuals with PTSD better controlled the amount of inflammation produced by their bodies, their quality of life would improve, both emotionally and physically.

 

There is no cost to speak with Dr. Hellen. She can be reached at 1.302-265.3870 ET [USA] or contacted at: drhellen@drhellengreenblatt.info.

 

www.ncbi.nlm.nih.gov/pubmed/23806967
www.nimh.nih.gov/health/topics/post-traumatic-stress-disorder-ptsd/index.shtml
www.ncbi.nlm.nih.gov/pubmed/24157651
archpsyc.jamanetwork.com/article.aspx?articleid=1833091
www.medpagetoday.com/Psychiatry/AnxietyStress/44519
www.cdc.gov/niosh/topics/traumaticincident/
www.ncbi.nlm.nih.gov/pubmed/19780999
www.biomedcentral.com/1471-244X/13/40
www.ncbi.nlm.nih.gov/pubmed/24948537
archpsyc.jamanetwork.com/article.aspx?articleid=1790358
www.ncbi.nlm.nih.gov/pubmed/24559851
www.ncbi.nlm.nih.gov/pubmed/24875221
circ.ahajournals.org/content/101/15/1767.full
www.veteransandptsd.com/PTSD-statistics.html
www.hindawi.com/journals/cherp/2012/490804/

Nearly every day people tell me that their joints are swollen and stiff, they hurt all over, and that they look and feel older than their chronological age. Most of these individuals have been diagnosed with rheumatoid arthritis.

Arthritis is a sign of a “boosted” immune system with excessive inflammation leading to joint damage. People report pain in areas such as their backs, fingers, hands, wrists, knees, and shoulders.

Rheumatoid arthritis typically affects the joints of the body. However sometimes even before joint symptoms appear, rheumatoid arthritis can involve other parts of the body including the lungs or eyes. Long-term inflammation of the lungs leads to scarring and shortness of breath, fatigue, weakness, and an on-going, chronic dry cough. If the pleura, the tissues around the lungs, become inflamed, fluid buildup may result in fever, pain when taking a breath, and difficulty in breathing.

Inflammation Is Essential for Our Survival:
Clinicians, and most lay people, focus on the harmful aspects of inflammation and try to stop the inflammatory response at all costs. Instead, all that is needed is to control the this immune response. The process of inflammation is normal, protective, and absolutely essential for our survival. Inflammation is the first step to healing after an injury or when the body is gathering its forces to stop an infection. Immune inflammation also helps the body destroy cancer cells before they grow and multiply.

When the body recognizes it has been injured or infected, the immune system releases antibodies and cytokines, smaller proteins that attract different types of immune cells into an area, to help eliminate and destroy threats to the body.

Once healing has started, the amount of inflammation that the body produces must be controlled. The genes that control inflammation have to be “turned off”, down-regulated, so that inflammatory responses are limited.

Arthritis is an Autoimmune Disorder:
Arthritis is one of many autoimmune disorders in which the body mistakenly produces autoantibodies, antibodies against its own tissues that attach to joint linings, and cartilage which acts as a shock absorber. The presence of autoantibodies may trigger immune cells to release inflammatory molecules that cause damage to the joints and other organ systems.

The Effect of Stress and Weight on Arthritis:
There are many factors that contribute to the discomfort experienced by individuals with joint issues. Two of these most recently investigated are: stress and weight.

Stress:
The body increases the amount of inflammation it produces when it is exposes to constant stress and the stress of pain. It becomes part of a vicious cycle. Stress causes inflammation, and inflammation leads to more stress. There is crosstalk between the nervous, hormonal, and immune systems. Changes in one system effects the other system.

Stressed individuals suffering from rheumatoid arthritis produce much higher levels of most cytokines than people without arthritis. Immunologically they respond differently to stress.

Weight Issues:
Overweight and obese patients with rheumatoid arthritis have more pain and respond less well to medication, as compared to normal weight patients. Obesity is an inflammatory disease during which fat cells, especially those concentrated around the inner organs, pump out large numbers of inflammatory molecules. Certain inflammatory proteins are found in high number in the abdominal fat tissue of overweight and obese individuals.

Importance of Immune Balance/Immune Homeostasis:
Immune inflammation is tightly regulated by the body. It consists of a) triggering and maintaining inflammatory responses, and b) producing immune messages that decrease and/or entirely stop the inflammation. Imbalances between the two phases of inflammation results in unchecked inflammation, loss of immune homeostasis, and may result in cell and tissues damage like that experienced in rheumatoid arthritis.

The key is to incorporate lifestyle changes to help the body maintain immune balance.

 Help your body return to immune balance.  Dr. Hellen may be contacted at: 302.265.3870 ET USA, or use the contact form. Thank you.

www.mayoclinic.org/diseases-conditions/arthritis/basics/definition/con-20034095
www.hopkinsmedicine.org/Press_releases/2003/10_17_03.html
www.ncbi.nlm.nih.gov/pubmed/24846478
www.ncbi.nlm.nih.gov/pubmed/24738934
 www.ncbi.nlm.nih.gov/pubmed/24850878
ard.bmj.com/content/early/2014/05/12/annrheumdis-2013-205094
www.fasebj.org/content/27/12/4757

People who are heavy and are not physically active, are at greater risk for conditions such as: increased blood sugar, higher pressures on their artery walls (high blood pressure), increased rate and workload on the heart, stroke, joint problems, sleep disorders, difficulty breathing, and even certain types of  cancer.

There are other posts on this blog relevant to the issue of being overweight or obese, but there is little question that most individuals would feel a lot better if they were only 5 or 10 pounds lighter.

When compared to leaner people, adipose tissue, the fat deposits of obese individuals, have higher numbers of, and larger, fat cells.  These cells produce cytokines, immune factors, that are inflammatory in nature and trigger numerous inflammatory conditions including many mentioned above.

Adipose tissue has “immune-like” properties.  For example, macrophages, white blood cells which alert the body to the presence of invaders, are found in high numbers in fat cell clusters.  Additionally, obese individuals have been shown to have  increased levels of proteins in the blood stream that stimulate inflammation.  Overweight or obese people do not fight infections or heal as well as individuals at more appropriate weights.

 The following hypothesis may have validity.  The immune system may “see” components of adipose tissue as “foreign material” that must be eliminated from the body.  If this scenario is correct, when the body “battles” adipose tissue an autoimmune response is triggered, a response in which the immune system destroys its own tissues, resulting in high levels of inflammation. My hypothesis is supported by the fact that obese individuals produce high levels of autoantibody, antibodies against their own tissues. Rather than resulting from inflammation, these autoantibodies may be the trigger for inflammation.

Muscle cells, like fat cells, secrete cytokines, molecules which help the body regulate inflammatory responses. In response to exercise, many different types of cytokines are produced by muscles and other cells.  Cytokine measurements taken after a marathon demonstrated 100 fold increases of certain cytokines, whereas other cytokines were produced that typically dampen an inflammatory response.

The wide spectrum of immune factors that the body produces in response to physical activity helps the body maintain a steady state of inflammation, an immune balance that helps the body defend itself against infection and helps healing, but not so much that innocent by-stander tissues are damaged.  In fact, studies have shown that individuals that are overweight, nevertheless may be healthy, if they are maintain a level of physical fitness.

The bodies of overweight and obese individuals are consistently exposed to self-generated, inappropriate levels of inflammation.  Helping the body return to a healthy balance of immune responses, a state of homeostasis, will go a long ways towards changing their quality of life.

I would be pleased to hear from you if you are interested in changing your quality of life.  I can be contacted at: drhellen@drhellengreenblatt.info or at:  302.265.3870 USA ET.

 


diabetes.diabetesjournals.org/content/56/6/1517.full

www.ncbi.nlm.nih.gov/pubmed/14679176
www.ncbi.nlm.nih.gov/pubmed/23562157
www.ncbi.nlm.nih.gov/pubmed/22429824
www.ncbi.nlm.nih.gov/pubmed/24761347
www.nature.com/icb/journal/v78/n5/full/icb200073a.html
online.liebertpub.com/doi/abs/10.1089/jmf.1998.1.171
brevets-patents.ic.gc.ca/opic-cipo/cpd/eng/patent/2355168/summary.html?type=number_search

Over the last 18 months, at least 25 children have been affected in the California area by a “polio-like” illness resulting in partial paralysis of five of the children.  As of this week, two out of five of these children have tested positive for enterovirus.  According to the news media, Australia and Asia have also report similar cases.

A commonly found virus, enteroviruses typically result in only mild symptoms such as runny nose, coughing, muscle aches, and sneezing. However, there are 60 different varieties of enteroviruses, and infection with certain types of these viruses results in spontaneous abortion, stillbirth, and congenital anomalies.  Infection with other varieties of enteroviruses can lead to damage of various tissues including skin, muscles, brain, spine, nerve cells, liver, and heart.

Some enteroviruses appear to specifically target the brain and the nervous system, leading to short- or long-term paralysis affecting mobility. So for example, polio enteroviruses attack the nervous system triggering an inflammatory response to destroy the viruses.  The resulting inflammation may lead to mild paralysis, or to an individual becoming completely paralyzed within hours.

Some persistent enteroviruses survive in the body for a prolonged time with continued inflammation and damage to tissues.   So for example, polio patients that initially recover from their disease may continue to experience damage of nerve and muscle cells by inflammatory processes.  This resurgence of symptoms can result in a post-polio syndrome (PPS) years after their original exposure to the virus.

Individuals with post-polio syndrome have high levels of inflammatory cytokines, immune factors, in the spinal fluids between the thin layers of tissues that protect the spinal cord.  Other conditions resulting from enterovirus infection are often associated with the production of inflammatory molecules. Even patients with relatively mild symptoms and no nervous system complications may show increased blood levels of inflammatory immune factors.  This suggests that excessive inflammatory responses are occurring throughout the body.

A delicate balance exists between inflammatory and anti-inflammatory responses of the body.  The immune system is always on alert defending itself against infection.  However, once the process is triggered, the inflammation must be a measured, controlled response that does not destroy healthy tissue.

www.decodedscience.com/polio-like-virus-california-enterovirus-68-paralyzing-kids/43034
www.ncbi.nlm.nih.gov/pubmed/18219253
www.ninds.nih.gov/disorders/post_polio/detail_post_polio.htm
www.ncbi.nlm.nih.gov/pubmed/24367714
www.enterovirusfoundation.org/associations.shtml
www.ncbi.nlm.nih.gov/pubmed/22776106
 

Blood disorders are diseases that affect blood components: 1) red blood cells, 2) white blood cells, and/or 3) platelets.

 Red blood cells are disc-shaped cells that carry oxygen from the lungs to all the cells in the body White blood cells are immune cells that help the body heal, and protect itself from infections and cancerous cells that might grow into tumors or cancers of the blood.  Platelets are blood elements that stick to the lining of blood vessels and help the blood to clot when  bleeding from a wound.

 Some common blood disorders are  anemia, thalassemia, sickle cell anemia,  idiopathic thrombocytopenic purpura (ITP),pernicious anemia,  hemolytic anemia, and aplastic anemia.

 All of these disorders have a single commonality, mainly that individuals with these types of conditions have low numbers of red cells, white blood cells, and/or platelets.

 Inflammation is necessary for our survival. Invasion by pathogens initiates inflammatory processes that attack these organisms. However, too often the “forest fire” gets out of control, and healthy cells, tissues, and organs are damaged.  When the body attacks its own cells, the condition is called an autoimmune, against -oneself, response.

 Thalassemia is an inherited disease in which people have abnormally low numbers of red blood cells and low hemoglobin. The hemoglobulin molecule is faulty and unable to carry its typical complement of oxygen.  [Hemoglobin is a protein that  helps  transport oxygen throughout the body.  Red blood cells also carry waste gases like carbon dioxide  to the lungs where it is released and then exhaled.]

 Individuals with thalassemia often suffer from inflamed blood vessels and slower blood flow in their blood vessels.  Both problems put individuals at greater risk of suffering from thromboembolism.  In this condition, a blood clot, an embolus, partially or totally blocks blood vessels deep in the body (deep vein thrombosis) or a clot is released that suddenly interferes with blood flow within a lung artery (pulmonary embolism), which can be fatal.

As blood clots form, an inflammatory response is triggerred to break up the clots.  More inflammation results in the production of more cytokines, immune messages that affect blood clotting.  Individuals with thalassemia, as with other blood disorders, typically have higher levels of inflammatory cytokines than individuals without such conditions.

It never ceases to amaze me how many health practitioners ignore the contribution of inflammatory process to diseases such as thalassemia.  In blood disorders, as with most other diseases, achieving and maintaining immune inflammatory homeostasis, balance, is essential.

 Being in homeostasis means that there are enough immune factors, pro-inflammatory cytokines to initiate a proper inflammatory response, and corresponding anti-inflammatory factors to limit inflammation and the damage it may cause.  A delicate balance of these messages are essential.

 What does one lose by moderating excessive inflammatory responses?  Control inappropriate levels of inflammation, and improve the quality of life of those with blood disorders, and most other diseases.

 [Please look for future posts on other blood disorders such as sickle cell anemia, pernicious anemia, and idiopathic thrombocytopenic purpura (ITP)].

 There is no cost to readers of these posts to speak with Dr. Hellen.  She can be reached at 1.302-265.3870 [USA] or contacted at:  drhellen@drhellengreenblatt.info .

 

www.nhlbi.nih.gov/health/public/blood/
www.nhlbi.nih.gov/health/health-topics/topics/pe/
www.sciencedirect.com/science/article/pii/S1079979609001387
bloodjournal.hematologylibrary.org/content/87/12/5051.full.pdf

 

 

People with serious lung problems who are unable to breathe for themselves, for example, patients in intensive care units recovering from injuries, or who have viral, or bacterial infections, like pneumonia, may be placed on mechanical ventilation.

Although these patients may require a ventilator, too often these devices make their lung conditions worse. Patients with lung injuries that require mechanical ventilation lead to more deaths annually than do breast cancer and prostate cancer combined.

For years, scientists have known that when lungs are exposed to rhythmic pressure of ventilation, the production of cytokines, immune messengers, are stimulated.  This excessive production of cytokines results in “boosted”  levels of inflammation in the lungs that may damage the lungs, even after ventilation has been stopped. Excessive inflammation can lead to the destruction of formerly healthy organ systems.

It is as if the immune system sees “pressure” as a “foreign agent” an event against which the body much be protected.  The pressure appears to trigger an immune inflammatory response in the body.

This phenomenon can be seen even at the cellular level.  Exposing cells in a test tube to as few as four hours of rhythmic pressures results in increased levels of inflammatory cytokines that recruit more inflammatory immune cells into the area. Twelve (12) hours of ventilation-type treatment results in a 5-7 times increase in the levels of inflammatory cytokines.

During winter months, respiratory infections are the most frequent cause of intensive care unit hospitalizations for infants.  For some infections, Infants that are on mechanical ventilators have  significantly higher levels of lung inflammation than infants not being ventilated. However, even in healthy children, mechanical ventilation triggers an inflammatory response within hours.

 For over a decade I have tried to educate the public about the need for the body to maintain immune inflammatory homeostasis, immune balance; having enough inflammation to do the job, but not so much that it causes damage.

 Inflammation is necessary for our survival to protect us from infections, and it is the first step the body takes when it heals itself, for example, after an injury. 

But the amount of inflammation produced by the body must be tightly limited, because too much inflammation is like an uncontrollable forest fire.

One of my greatest frustrations has been trying to help medical practitioners understand that inappropriate inflammation is the foundation of most of their patients’ problems, but too often, “they just couldn’t get it”.  Now, every journal, every magazine touts the fact that “inflammation is the root cause of disease”.  They admit that it has a role in cardiovascular disease, gastrointestinal, emotional problems  etc. and that inflammatory responses play a major role in cancer.

It has been my experience that when individuals have major health issues, “following the levels of inflammation” will help explain what is happening to the patient.  In cases of mechanical ventilation, other procedures  and conditions, what would be the harm in taking steps to limit uncontrolled levels of inflammation, and help return the body to immune homeostasis?

 

Dr. Greenblatt looks forward to assisting you in returning to immune balance:  She can be contacted at: http://drhellengreenblatt.info/contact-dr-hellen or 1.302-265.3870 [USA, ET]. Thank you.

 

www.ncbi.nlm.nih.gov/pubmed/24349427
www.ncbi.nlm.nih.gov/pmc/articles/PMC3859624/
www.ncbi.nlm.nih.gov/pubmed/?term=Ghadiali+ventilators
researchnews.osu.edu/archive/lungvent.htm
www.fasebj.org/search?fulltext=Samir+Ghadiali&submit=yes&x=13&y=12
www.medicine.uiowa.edu/Newsarticle.aspx?id=22193
www.ncbi.nlm.nih.gov/books/NBK6868/
 

css.php