Welcome to Delicate template
Header
Just another WordPress site
Header

The body’s cells, especially brain and red blood cells, obtain their energy needs from the glucose (sugar) that circulates in the bloodstream.  There is an optimum amount of glucose that our body needs.  Too high a level of glucose, is just as bad as too little. The body uses insulin, a hormone, to support healthy levels of blood sugar.  Individuals with diabetes cannot properly control their blood glucose levels, and are therefore at risk of cardiovascular disease, stroke, eye, kidney, skin, and nervous system complications.

 The probability of getting diabetes is especially high in obese individuals.  Fat cells, especially those found around one’s waist, release pro-inflammatory cytokines.  The production of these immune factors result in inflammatory responses that destroy insulin-producing cells, making it difficult for the person to control their blood glucose.

 Dr. Umut Ozcan of Children’s Hospital Boston, has stated that “For 20 years, inflammation has been seen as detrimental, whereas it is actually beneficial.”  Research demonstrates that obese individuals have difficulty in maintaining healthy blood sugar levels due to imbalances of inflammatory molecules. Some proteins triggered by inflammation help the body control glucose levels, whereas other types of inflammatory molecules are detrimental to maintaining healthy glucose levels. 

 Dr. Ozcan continues,  “It may be that inflammatory pathways are not working optimally and there could be a resistance to the cytokines that mediate the inflammation.”.

 Restoring immune homeostasis, balance,  by helping the body control excessive inflammation may reduce the symptoms of diabetes or the risk of getting the condition in the first place.    Lifestyle changes, rather than medication, are the best way to regain immune balance.

 Please look for our next posting that will describe ways that one can help correct imbalances between pro-inflammatory (molecules that lead to inflammatory responses) and anti-inflammatory cytokines (cell messages).

 

www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031225

www.cdc.gov/obesity/causes/health.html

www.nature.com/nm/journal/v17/n10/abs/nm.2449.html

vectorblog.org/2011/09/in-diabetes-inflammation-may-be-part-of-the-solution-not-the-problem/

http://cat.inist.fr/?aModele=afficheN&cpsidt=20604914

 

Many patients that undergo chemotherapy report lingering effects of the disease, or from treatment protocols. Some individuals report that experience problems with cognition, clear thinking, memory, focus, concentration, and staying organized which they call “brain fog” or “chemo brain.”

The relationship between inflammation and cancer is still under intense study. Immune inflammation plays a major role during different stages of tumor development, from recognition of the cancer cells, to metastasis, to resolution of the disease. There are proven complex interactions between immune and cancer cells during which there appears to be “cross-talk.”

Chemotherapeutic medications are, of necessity, cytotoxic. The medications cause the death of cells (apoptosis) by programming their death or by interfering with certain biochemical processes within the cell.

The relationship of inflammatory immune cells and dead cells is a complex one. Whenever a cell dies because of infection or injury, inflammatory immune cells release inflammatory cytokines, messages that activate immune cells to clean up debris, and start the healing process.

Chemotherapy, in which both healthy and cancerous cells are killed, can have unintended effects. The medications can damage immune cells and their DNA; the very cells that the body needs to stop cancer cells from multiplying, to clean up the dead cells, and heal the body after cytotoxic challenge.

An example of such a possible problem is tumor lysis syndrome. When large numbers of cells are killed by chemotherapeutic agents, the dying cells release vast amounts of inflammatory-triggering compounds. The body is simply overwhelmed by these factors, resulting in significant immunological and chemical disruptions throughout the body.

A limited number of studies, still to be replicated, suggest that long after treatment has ended, healthy brain cells continue to die off. And at least one study has shown altered brain structure in individuals that had undergone chemotherapy a year previously. These results however, were not seen in patients that had received chemotherapy three years previously.

The relationship between inflammation, cancer, and cancer therapy, is not understood. However, the available science suggests that limiting excessive inflammatory responses by the immune system, may help minimize the adverse effects of chemotherapy, especially as it relates to the brain.

 

http://www.mayoclinic.com/health/chemo-brain/DS01109


www.ncbi.nlm.nih.gov/pubmed/20303878


www.ncbi.nlm.nih.gov/pubmed/21545608

www.nature.com/cdd/journal/v15/n1/full/4402255a.html

www.ncbi.nlm.nih.gov/pubmed/22294874

www.nature.com/nrclinonc/journal/v3/n8/full/ncponc0581.html

jbiol.com/content/7/4/11

 

css.php