Anti-Inflammatory/Anti-Aging Strategies
Header image

One of the major complaints that people have is that “they are always tired”. “They just do not care anymore, they are just too tired.” [Kindly view a post that is relevant to this subject: Depression, Anhedonia and Run-Away Inflammation.]

In the past, scientists thought that there was a blood-brain barrier that “isolated” the brain from the actions of the immune system. They labeled the brain “immune privileged”; because studies suggested that a healthy brain had few, if any inflammatory cells in it. Only when there was a brain infection did scientists think that immune cells migrated into the brain.

Researchers failed to take into account that chronic inflammatory diseases are associated the brain. For example conditions such as inflammatory bowel disease, psoriasis, liver disease, and rheumatoid arthritis may result in a lack of social interest, feelings of being unwell and unremitting fatigue—all which are governed by brain function.

Inflammation is activated when the body encounters pathogens and cancerous cells. The inflammatory response is a primary means by which the body will destroy these threats. Inflammation is basically a controlled “burn”.  Firefighters will often have a “controlled burn” in a forest to get rid of dead trees and limbs.  They strive to keep the fire limited to a specific area.  Sometimes however firefighters are unable to control the fire and acres of forest are burned in error.

Similarly, once immune cells have taken care of a threat to the body, for example cancer cells, pathogens, etc., it is essential that the immune system “turn” down the inflammatory “flame”. Chronic, unnecessary inflammation leads to many autoimmune diseases that destroy their own organs, such as diabetes, Crohn’s bowel disease, multiple sclerosis, and lupus

Inflammation is all about location, location, location. If one has inflammation in the insulin-producing cells that control blood sugar, the person may get diabetes. If their intestines are inflamed they may suffer from Crohn’s.  If there is too much destruction and inflammation of nerve cells, they may suffer from multiple sclerosis.

Let us hypothesize that an individual has two trillion immune white blood cells and that half of these cells are out of control and producing too strong an inflammatory response. This inflammation is destroying previously healthy tissues and organs.  Since the body is always striving to balance inflammation, the other half a trillion of cells are working towards lowering the amount of inflammation and destruction that is going on in the body

Each of these cells is expending a trivial amount of energy trying to accomplish its task, but a tiny amount of energy multiplied by two trillion cells is a great deal of “wasted energy”. Is it any wonder why these people complain of being tired?

Individuals who have been diagnosed with autoimmune conditions have higher levels of inflammatory cytokines, immune messages, than people without disease. In heart failure patients, significant fatigue is associated with poor recovery and a higher risk of death. Patients with high levels of anti-inflammatory cytokines, molecules that decrease inflammation, recover more fully and rapidly than patients with high amounts of inflammatory cytokines. When patients are treated for their heart problems, their cytokine levels begin to resemble the cytokine ratios of healthy individuals, and their energy returns.

In mice with liver inflammation, immune cells from the liver travel to the brain and trigger other specialized immune cells called microglia releasing a biochemical that attracts more inflammatory cells into the brain, which in turn produces more inflammation.

In individuals with multiple sclerosis, a nervous system disease with a major inflammatory component, patients had less fatigue when they took anti-inflammatory medications.

The association of appropriate levels of inflammation with a healthy brain and high energy reserves is clear; the key is being in immunological balance. Once individuals balance inflammatory and anti-inflammatory cells they typically regain their energy and focus.

Aren’t you tired of being tired all the time? Don’t wait any longer. Contact Dr. Hellen to talk bout enhancing your quality of life.  There is no fee for consulting with her for the first 30 minutes.  She may be contacted by using this form or at: 302.265.3870 (ET, USA).

http://www.ncbi.nlm.nih.gov/pubmed/25905315
http://www.ncbi.nlm.nih.gov/pubmed/25905315
www.ncbi.nlm.nih.gov/pubmed/26589194
http://www.the-scientist.com/?articles.view/articleNo/43120/title/Brain-Drain/
http://www.ncbi.nlm.nih.gov/pubmed/26705751
http://www.ncbi.nlm.nih.gov/pubmed/25682012

 

The concept of epigenetics was first introduced in the 1940s, and its implications on how we modulate inflammation through its processes are intriguing and exciting.

For most of my scientific career, we were taught that biological processes of the body were pre-determined by genes. It was said that DNA’s message was set-in-stone, and except through mutations which might result in cancer, or mutations and recombinations of genetic material that were handed down from one generation to another, the message encoded by DNA was unchanging.

Accumulating evidence suggests that altering our diet, life style, and environment, significantly influences gene expression; the way that the body translates the DNA message. We can change the affect our genes have on our physiological and emotional well-being.

It never ceases to amaze me that the medical profession writes off conditions such as arthritis, heart disease, cancer, strokes, Alzheimer’s etc. as being the result of “aging”; basically, saying to their patient, “you have to live with it because you are getting old”.

Instead, health practitioners might better focus on the fact that imbalances of inflammatory and anti-inflammatory responses contribute to health issues. Directing the emphasis on life style changes would enable individuals to take steps towards breaking the inflammation cycle, literally affecting the DNA message, and the resulting quality of their lives.

There are simple approaches that help maintain immune balance, immune homeostasis. Two such changes are: limiting the size of fat cells, and exercise. Fat cells, especially around our abdominal area, produce large amounts of pro-inflammatory cytokines, that trigger inappropriate levels of inflammation.

Exercise is a way to neutralize these molecules since contracting our muscles releases potent anti-inflammatory cytokines.

Additionally, the daily consumption of two or more servings of hyperimmune egg can go a long way toward supporting the body’s natural immune-rebalancing attempts.

In the controversy of genes vs. nurture, we now know that it is a combination of both that makes the difference. We can help regulate what our genes “say” by how we choose to live our lives.

www.sciencemag.org/site/feature/plus/sfg/resources/res_epigenetics.xhtml

www.ncbi.nlm.nih.gov/pubmed/22004920.1

target=”_blank”>articles.mercola.com/sites/articles/archive/2012/04/11/epigenetic-vs-determinism.aspx

www.ncbi.nlm.nih.gov/pubmed/22428854

www.ncbi.nlm.nih.gov/pubmed/20388091

 

css.php