Anti-Inflammatory Strategies–Achieving Homeostasis
Header image

Parkinson’s is a disease of the nervous system that affects mobility, memory, and cognition.  Individuals may eventually experience rigid muscles, tremors of the limbs and head, loss of muscle control, monotonous speech levels, and a slow, shuffling gait.

Individuals tend to develop the disease as they age. Having a close relative with Parkinson’s disease (PD) increases the likelihood of developing Parkinson’s, with men more than 1.5 times more likely to develop the disease than females.

Although the causes of Parkinson’s disease are not clear, a recent study suggests that individuals with a specific gene are at a higher risk of getting Parkinson’s disease if they were exposed to pyrethroids, a class of chemicals found in the majority of household insecticides.  Exposure of individuals to these pesticides may result in brain tissue inflammation.

Inflammation and Autoimmune Responses

In Parkinson’s disease, the body mounts an inflammatory response against its own brain cells, its dopaminergic neurons. (An immune response against oneself is called an autoimmune response.)

These specialized brain cells produce a biochemical called dopamine with many functions including controlling bodily movements, memory, ability to think, mood, and learning.  The body’s long-lasting inflammatory response against its own nervous cells gradually destroys the dopaminergic neurons resulting in abnormal dopamine levels and brain activity, symptoms associated with Parkinson’s disease.

Microglial cells are specialized immune cells located in the brain. They are considered the “canary in the mine”.  When microglial cells sense a threat, they become “activated” and release immune factors that may, depending on the types and amounts of these molecules, be beneficial or cause damage to nerve cells.

Activated microglial cells are found in large numbers in the brains of Parkinson’s patients, along with high levels of cytokines, biochemical molecules responsible for inflammation.

The brain and spine of the nervous system are cushioned by cerebrospinal fluid. This fluid helps to provide nutrients to the nervous system and removes waste products from the brain.

Individuals with Parkinson’s disease have high levels of immune inflammatory molecules in their spinal fluid.  The more concentrated the molecules, the more likely the person is to severe fatigue, depression, and cognitive impairment.

Summary

Certain genes that control immune system responses are also strongly linked with the development of Parkinson’s disease.

Increasingly, scientific studies suggest that inflammation and autoimmune responses result in Parkinson’s disease.

Helping the body limit out-of-control inflammation, and achieving a more homeostatic, more balanced immune response, may go a long way towards changing the quality of life in individuals with Parkinson’s.

Feel free to contact Dr. Hellen. There is no fee for speaking with her. Dr. Hellen may be contacted by using this form or at: 302.265.3870 (ET).

 www.nature.com/npjparkd/
www.sciencedirect.com/science/article/pii/S1357272504003711
physrev.physiology.org/content/91/2/461
www.ncbi.nlm.nih.gov/pubmed/25757798
www.ncbi.nlm.nih.gov/pubmed/25769314
www.ncbi.nlm.nih.gov/pubmed/22166438
www.ncbi.nlm.nih.gov/pubmed/25215472
www.ncbi.nlm.nih.gov/pubmed/22814707
www.medicalnewstoday.com/articles/265378.php

The brain, being the “control center” of the body is cushioned by fluid, and is protected by bone and layers of membranes that support blood vessels that feed the brain.

Concussions
Direct or indirect mechanical impact to the brain may result from sports activities or workplace accidents. These may result in trauma to the brain. Rapid acceleration or deceleration, e.g., motor vehicle accidents or intense changes in pressure, e.g., blast exposures can also lead to brain damage.

The term “concussion” is commonly used to refer to a brain injury resulting from the head being hit with a great deal of force. Shaking the upper body and head violently can also cause brain damage.

Concussions alter the way the brain functions. The effects are usually short-lived, but may include being dazed, headaches, and problems with concentration, memory, balance, and coordination.

Brain injuries may result in loss of consciousness, but since the majority of cases do not end in “blackouts”, concussions often occur without the individual realizing they have had damage. The impact may seem relatively mild, and the individual may appear only to be dazed and with time and rest they may heal properly.

Serious untreated concussions can result in long-term brain damage and may even end in death.
Repetitive head injuries are a major issue especially when an individual sustains additional head injuries before the damage from the prior injury has been completely resolved.

The effects are cumulative. Cumulative sports concussions increase the likelihood of permanent neurologic disability. Complete recovery from an initial trauma can take from 6-18 months, and multiple concussions over time may result in long-term problems, including neurological deterioration, dementia-like symptoms, memory disturbances, behavioral, and personality changes, Parkinsonism, and speech and gait abnormalities.

In a minority of cases, additional trauma to the brain, even occurring from days to weeks following a prior event, can lead to collapse and death within minutes.

How quickly and completely one heals, depends on a number of factors including one’s genetic makeup. (This would be expected since genes determine a cell’s ability to withstand mechanical stress, regenerate, and heal.)

Inflammation and Concussions
For years it was thought that the membranes around the brain acted as a blood-brain barrier which stopped the brain from responding with inflammatory responses when it was confronted by infection. However, it has now been shown that concussions and other brain injuries, or infection or disease, will trigger inflammatory responses.

The types of immune cells found throughout the body are also found in the brain, but additionally, the brain has unique immune cells. When activated, brain-specific microglia and astrocytes, produce inflammatory cytokines that remain localized in the brain.

In response to brain injury, the immune system releases a tidal wave of pro- and anti-inflammatory cytokines, molecules that trigger and/or stop an inflammatory response depending on what is needed.

In small amounts, these cytokines help protect the brain and heal it. However, prolonged exposure to inflammatory cytokines, or too high a level of these proteins, will result in damage that accumulates after injury. High levels of inflammatory cytokines are localized at the injury site, and may be found on the opposite side of the head from the side that was hit.

There is increasing evidence suggesting that much of the neurological damage that occurs after the brain is injured is the result of a delayed inflammatory response that lasts hours, days, or even for months after the injury. This chronic inflammatory response may cause more damage to the brain tissue than the mechanical impact itself.

Immune Homeostasis, Immune Balance is the Key
Unfortunately, pharmaceutical treatments known to reduce inflammation appear to interfere with the brain’s natural repair mechanisms. Therefore it is necessary for the body to control its inflammatory responses. It has to produce enough of a response to help brain tissue heal, but not an overly exaggerated inflammatory response which may cause more damage after injury.

In order for the brain to heal after trauma, the immune system must generate the proper balance, and types, of pro-inflammatory and inflammatory cytokines. For those with brain injuries, maintaining immune homeostasis, immune balance, may be the best way to minimize damage.

 

Dr. Hellen is available at 302.265.3870 for discussion on the role of inflammation and immune homeostasis in our health.  She may be contacted at: drhellen@drhellengreenblatt.info, or use the contact form.  Thank you.

emedicine.medscape.com/article/92189-overview#a0107
www.ncbi.nlm.nih.gov/pmc/articles/PMC2945234/
emedicine.medscape.com/article/92189-overview
www.headcasecompany.com/concussion_info/stats_on_concussions_sports
www.ncbi.nlm.nih.gov/pmc/articles/PMC3520152/

 

During the 1970′s and 80′s, the saga of the “boy in the bubble” was followed with great interest. David Vetter, a young Texas boy had severe combined immunodeficiency (SCID), a disease caused by life-threatening defects in his immune system. His immune system was unable to protect him from infection, resulting in the necessity of having to live in a germ-free, isolation containment center designed by NASA engineers. He lived in this plastic bubble from the time of this birth until he died at the age of 12 following a failed bone marrow transplant.

The containment center was supposed to keep David separated from any pathogens that might harm him. Unfortunately, it was likely that it was a virus-contaminated bone marrow transplant that resulted in lymphoma, an immune system cancer, which ended David’s life.

Living in a sea of pathogens, a functional immune system is essential for our survival. Inflammation is among the first steps the body takes to heal after injury or disease and it uses immune inflammatory responses to protect us from cancer cells and pathogens. But too much inflammation is as serious a problem as too little inflammation. The body constantly struggles to limit the amount of inflammation that it produces, with uncontrollable amounts of inflammation acting like as if it was an out-of-control forest fire, destroying healthy cells in its path.

The four letters “itis” indicate an inflammatory condition. Typically, the name of the disease depends on the location in which the inflammation occurs. For example, arthritis (inflammation of the joints), colitis (inflammation of the intestinal tract, the colon), dermatitis (inflammation of the skin), nephritis (inflammation of the kidney), pancreatitis (inflammation of the pancreas), and uveitis (inflammation of a part of the eye).

Most immune cells do not have specialized names, however some organs have specialized inflammatory immune cells that detect infection and help resolve infection or injury to the body. Kupffer cells are most often associated with the liver. Microglia are associated with the brain and are involved in repairing damaged brain tissue and protecting the brain against disease. Dust cells, also known as alveolar macrophages, carry out similar functions in the lungs.

Inflammation is like real estate: location, location, location. The process of inflammation is substantially the same no matter where in the body the inflammation occurs. The intensity of the inflammatory response is determined by a balance between pro-inflammatory (molecules that cause inflammation) and anti-inflammatory (molecules that dampen inflammation) cytokines, immune messages that are released by immune cells.

The key to healthy immune responses is to be in immune homeostasis, immune balance. We must maintain the balance of enough inflammation to defend ourselves from pathogens, stimulate repair, and healing against the need to limit the amount of inflammation that too often leads to inflammatory diseases.

Contact Dr. Hellen for guidance in utilizing natural means to help the body return to immune homeostasis. She may be reached at:  DrHellen@DrHellenGreenblatt.info or or at 302.265.3870.

www.ncbi.nlm.nih.gov/books/NBK22254/
www.ncbi.nlm.nih.gov/pubmed/23720329
www.thedoctorwillseeyounow.com/content/mind/art3792.html?getPage=2
www.hindawi.com/journals/cherp/2012/490804/

 

css.php