Welcome to Delicate template
Header
Just another WordPress site
Header

For over two decades I have noticed that individuals in immune homeostasis, immune balance, are on fewer medications or no medications than their cohorts, and the majority of them look and feel 10 years younger than other people their age. Comparing photos of how these individuals look now with photos as how they looked 10-20 years ago, it is amazing how great they look! Their youthfulness is especially apparent when I compare these photos to those of individuals that have not made the effort to control inflammation.

Too many older individuals suffer from chronic inflammatory diseases such as arthritis, diabetes, cognition deficits, Parkinson’s disease, lung, kidney, and bladder problems. Over the years there have been numerous studies associating chronic (long-term) inflammation with the development of mutating cells and cancers. However because of the time it takes to do longevity studies it is difficult to prove that limiting inflammation makes a difference in how well people age.

Just this month, a team of scientists from Keio University School of Medicine, Tokyo, Japan and the Newcastle University’s Institute for Ageing in the UK published a study of the immune status of over 1500 individuals ranging in age from 100-115 years.

The study group was divided into two: centenarians, 100-104 years of age, and semi-supercentenarians aged 105 and above. The result was that these long-lived individuals had lower levels of inflammation as compared to the general public.  

Dr. von Zglinicki, one of the investigators, said, “Centenarians and supercentenarians are different – put simply, they age slower. They can ward off diseases for much longer than the general population… it’s only recently we could mechanistically prove that inflammation actually causes accelerated ageing in mice…This study, showing for the first time that inflammation levels predict successful ageing even in the extreme old….”

Dr. Yasumichi Arai, the first author on the study said, “Our results suggest that suppression of chronic inflammation might help people to age more slowly…However, presently available potent anti-inflammatories [medications] are not suited for long-term treatment of chronic inflammation because of their strong side-effects. Safer alternatives could make a large difference for the quality of life of older people.

As I have pointed out for decades, controlling the delicate balance of inflammatory responses, i.e., achieving immune homeostasis, makes all the difference in one’s youthfulness and quality of life.

P.S.  My post of May 20, 2013 also discusses the role of inflammation in longevity.

Please contact me directly if you would like to learn simple approaches to making a difference in your health.
http://www.ncl.ac.uk/press.office/press.release/item/scientists-crack-the-secret-of-the-centenarians
http://www.ebiomedicine.com/article/S2352-3964(15)30081-5/fulltext
www.ncbi.nlm.nih.gov/pubmed/26265203
www.ncbi.nlm.nih.gov/pubmed/26263854

 

Parkinson’s is a disease of the nervous system that affects mobility, memory, and cognition.  Individuals may eventually experience rigid muscles, tremors of the limbs and head, loss of muscle control, monotonous speech levels, and a slow, shuffling gait.

Individuals tend to develop the disease as they age. Having a close relative with Parkinson’s disease (PD) increases the likelihood of developing Parkinson’s, with men more than 1.5 times more likely to develop the disease than females.

Although the causes of Parkinson’s disease are not clear, a recent study suggests that individuals with a specific gene are at a higher risk of getting Parkinson’s disease if they were exposed to pyrethroids, a class of chemicals found in the majority of household insecticides.  Exposure of individuals to these pesticides may result in brain tissue inflammation.

Inflammation and Autoimmune Responses

In Parkinson’s disease, the body mounts an inflammatory response against its own brain cells, its dopaminergic neurons. (An immune response against oneself is called an autoimmune response.)

These specialized brain cells produce a biochemical called dopamine with many functions including controlling bodily movements, memory, ability to think, mood, and learning.  The body’s long-lasting inflammatory response against its own nervous cells gradually destroys the dopaminergic neurons resulting in abnormal dopamine levels and brain activity, symptoms associated with Parkinson’s disease.

Microglial cells are specialized immune cells located in the brain. They are considered the “canary in the mine”.  When microglial cells sense a threat, they become “activated” and release immune factors that may, depending on the types and amounts of these molecules, be beneficial or cause damage to nerve cells.

Activated microglial cells are found in large numbers in the brains of Parkinson’s patients, along with high levels of cytokines, biochemical molecules responsible for inflammation.

The brain and spine of the nervous system are cushioned by cerebrospinal fluid. This fluid helps to provide nutrients to the nervous system and removes waste products from the brain.

Individuals with Parkinson’s disease have high levels of immune inflammatory molecules in their spinal fluid.  The more concentrated the molecules, the more likely the person is to severe fatigue, depression, and cognitive impairment.

Summary

Certain genes that control immune system responses are also strongly linked with the development of Parkinson’s disease.

Increasingly, scientific studies suggest that inflammation and autoimmune responses result in Parkinson’s disease.

Helping the body limit out-of-control inflammation, and achieving a more homeostatic, more balanced immune response, may go a long way towards changing the quality of life in individuals with Parkinson’s.

Feel free to contact Dr. Hellen. There is no fee for speaking with her. Dr. Hellen may be contacted by using this form or at: 302.265.3870 (ET).

 www.nature.com/npjparkd/
www.sciencedirect.com/science/article/pii/S1357272504003711
physrev.physiology.org/content/91/2/461
www.ncbi.nlm.nih.gov/pubmed/25757798
www.ncbi.nlm.nih.gov/pubmed/25769314
www.ncbi.nlm.nih.gov/pubmed/22166438
www.ncbi.nlm.nih.gov/pubmed/25215472
www.ncbi.nlm.nih.gov/pubmed/22814707
www.medicalnewstoday.com/articles/265378.php

The brain, being the “control center” of the body is cushioned by fluid, and is protected by bone and layers of membranes that support blood vessels that feed the brain.

Concussions
Direct or indirect mechanical impact to the brain may result from sports activities or workplace accidents. These may result in trauma to the brain. Rapid acceleration or deceleration, e.g., motor vehicle accidents or intense changes in pressure, e.g., blast exposures can also lead to brain damage.

The term “concussion” is commonly used to refer to a brain injury resulting from the head being hit with a great deal of force. Shaking the upper body and head violently can also cause brain damage.

Concussions alter the way the brain functions. The effects are usually short-lived, but may include being dazed, headaches, and problems with concentration, memory, balance, and coordination.

Brain injuries may result in loss of consciousness, but since the majority of cases do not end in “blackouts”, concussions often occur without the individual realizing they have had damage. The impact may seem relatively mild, and the individual may appear only to be dazed and with time and rest they may heal properly.

Serious untreated concussions can result in long-term brain damage and may even end in death.
Repetitive head injuries are a major issue especially when an individual sustains additional head injuries before the damage from the prior injury has been completely resolved.

The effects are cumulative. Cumulative sports concussions increase the likelihood of permanent neurologic disability. Complete recovery from an initial trauma can take from 6-18 months, and multiple concussions over time may result in long-term problems, including neurological deterioration, dementia-like symptoms, memory disturbances, behavioral, and personality changes, Parkinsonism, and speech and gait abnormalities.

In a minority of cases, additional trauma to the brain, even occurring from days to weeks following a prior event, can lead to collapse and death within minutes.

How quickly and completely one heals, depends on a number of factors including one’s genetic makeup. (This would be expected since genes determine a cell’s ability to withstand mechanical stress, regenerate, and heal.)

Inflammation and Concussions
For years it was thought that the membranes around the brain acted as a blood-brain barrier which stopped the brain from responding with inflammatory responses when it was confronted by infection. However, it has now been shown that concussions and other brain injuries, or infection or disease, will trigger inflammatory responses.

The types of immune cells found throughout the body are also found in the brain, but additionally, the brain has unique immune cells. When activated, brain-specific microglia and astrocytes, produce inflammatory cytokines that remain localized in the brain.

In response to brain injury, the immune system releases a tidal wave of pro- and anti-inflammatory cytokines, molecules that trigger and/or stop an inflammatory response depending on what is needed.

In small amounts, these cytokines help protect the brain and heal it. However, prolonged exposure to inflammatory cytokines, or too high a level of these proteins, will result in damage that accumulates after injury. High levels of inflammatory cytokines are localized at the injury site, and may be found on the opposite side of the head from the side that was hit.

There is increasing evidence suggesting that much of the neurological damage that occurs after the brain is injured is the result of a delayed inflammatory response that lasts hours, days, or even for months after the injury. This chronic inflammatory response may cause more damage to the brain tissue than the mechanical impact itself.

Immune Homeostasis, Immune Balance is the Key
Unfortunately, pharmaceutical treatments known to reduce inflammation appear to interfere with the brain’s natural repair mechanisms. Therefore it is necessary for the body to control its inflammatory responses. It has to produce enough of a response to help brain tissue heal, but not an overly exaggerated inflammatory response which may cause more damage after injury.

In order for the brain to heal after trauma, the immune system must generate the proper balance, and types, of pro-inflammatory and inflammatory cytokines. For those with brain injuries, maintaining immune homeostasis, immune balance, may be the best way to minimize damage.

 

Dr. Hellen is available at 302.265.3870 for discussion on the role of inflammation and immune homeostasis in our health.  She may be contacted at: drhellen@drhellengreenblatt.info, or use the contact form.  Thank you.

emedicine.medscape.com/article/92189-overview#a0107
www.ncbi.nlm.nih.gov/pmc/articles/PMC2945234/
emedicine.medscape.com/article/92189-overview
www.headcasecompany.com/concussion_info/stats_on_concussions_sports
www.ncbi.nlm.nih.gov/pmc/articles/PMC3520152/

 

When I ask people for their typical dietary intake, many people “shamefully” tell me that they drink coffee.  It  surprises them when I ask “what is wrong with that”?  Coffee is a healthy addition to one’s diet because it can help the body regulate its  immune inflammatory responses.

Studies have shown that coffee consumption reduces the risk of conditions such as diabetes, neurological diseases, cardiovascular disease, certain cancers, depression,and back and neck pain to mention a few.

 Diabetes
Phytonutrients, plant compounds, other than caffeine, found in coffee, are reported to reduce blood sugar levels, and decrease the way the body stores carbohydrates and fats.  Data from over 450,000 people found that every additional cup per day of caffeinated or decaffeinated coffee lowers the risk of diabetes by 5 to 10%.  Heavy consumers of coffee, 12 cups/day, have a 67%  lower risk of getting diabetes.  The effect is not due to the caffeine found in coffee, but to other compounds in coffee.

 Parkinson’s Disease
In Parkinson’s disease, caffeinated coffee may protect nerve cells from destruction, decrease the incidence of Parkinson’s, and the improve mobility of individuals with Parkinson’s disease. In the case of Parkinson’s, the caffeine in coffee is the “magic ingredient”, since decaffeinated coffee does not have the same affect.  Women with Parkinson’s Disease, that were on hormonal replacement therapy, showed less benefit from coffee.  

Alzheimer’s and Dementia
As mentioned above, caffeine may help the body protect nerve cells. Consuming caffeinated coffee over a long period appears to decrease the risk of dementia or Alzheimer’s.

Heart Disease
In other studies, although coffee may raise blood pressure for a brief time, after two months of daily coffee consumption, blood pressure is reduced. It also lowers the risk of heart disease and reduces stroke incidents.

Cancer
Drinking one cup of coffee a day has been associated with a 42% lower risk of liver cancer.  Women that drank two or more cups of coffee per day had a delayed onset of a hard-to-treat cancer.  Individuals drinking three cups of coffee a day had a 40% lower risk of developing pharyngeal, esophageal, and oral cancers. Men who drank over six cups of caffeinated or non-caffeinated coffee a da,y had an 18% lower risk of prostate cancer, and a 40% lower risk of aggressive prostate cancer. Individuals that were heavy coffee drinkers had a 30% lower risk of colorectal cancer.

 Depression
A study of over 50,000 women, found that 4 cups of coffee daily lowered their risk of depression by 20%.

Coffee and Pain Responses
Subjects who consume coffee while working at the computer, report less pain in their back and necks than those that abstain from drinking coffee

Inflammatory Responses  and Coffee:
Regular coffee consumption affects the production of cytokines, such as IL-1 and IL-10 that regulate immune inflammatory responses. The data suggests that the benefits of coffee consumption are due to the phytonutrients, plant nutrients, and caffeine found in coffee. The adage that “coffee is not good for you”, should be re-examined.

 

Reach out to Dr. Hellen Greenblatt for simple steps to help the body balance inflammatory responses. 


http://www.lef.org/magazine/mag2012/jan2012_Discovering-Coffees-Unique-Health-Benefits_02.htm
http://www.ncbi.nlm.nih.gov/pubmed/22955949
http://www.biomedcentral.com/1756-0500/5/480/abstract
http://www.ncbi.nlm.nih.gov/pubmed/21858104
http://www.ncbi.nlm.nih.gov/pubmed/22070680
http://www.ncbi.nlm.nih.gov/pubmed/21779565
http://www.ncbi.nlm.nih.gov/pubmed/20839413
http://newsroom.ucla.edu/portal/ucla/why-coffee-protects-against-diabetes-190743.aspx
http://www.ncbi.nlm.nih.gov/pubmed/21030499
http://jama.jamanetwork.com/article.aspx?articleid=192731
http://www.ncbi.nlm.nih.gov/pubmed/22927157
http://www.ncbi.nlm.nih.gov/pubmed/22149008

 

Alzheimer’s and IVIG Rx
Last week John Gever, Senior Editor, MedPage Today brought attention to the results of a small study presented at the 2012 Alzheimer’s Association International Conference held in Vancouver, British Columbia.  In this study, patients with mild to moderate Alzheimer’s were given antibody preparations, immunoglobulin preparations, which were obtained by pooling plasma from numerous blood donors.  This sterile, medical product, IVIG, intravenous immunoglobulin, consists mostly of immunoglobulins, antibodies,  and is administered intravenously (IV). 

After receiving IVIG twice a month for three years, patient’s ‘ ability to function or think, their mood, or memory did not worsen over the three years. [Untreated Alzheimer’s disease patients typically show measurable declines in 3 to 6 months.]

The FDA, The U.S. Food and Drug Administration, has approved the use of IVIG for only six conditions.  However, it has been used “off-label”, to try and treat about 50 other conditions, including infectious diseases, a wide-range of autoimmune conditions, organ transplant and cancer patients, blood, and neurological conditions to mention a few.

When practitioners are asked how s/he thinks IVIG works, the response is typically, except for infectious diseases, “we are not sure”.

 IVIG Contains Immunoglobulins and Smaller Immune Factors
IVIG contains antibodies to organisms such as streptococcus, hepatitis, measles, polio, etc., that can specifically neutralize infectious agents.  Other immunoglobulins may be directed  against specific immunological factors. 

However, viewing reported results in chronically ill populations, I have always been of the opinion that IVIG also contains cytokines, or cytokine-like immune molecules, with potent immune system-modulating properties, which help the body return to immune homeostasis, immune balance. 

 I suggest that the reason that Alzheimer’s patients receiving IVIG saw a stabilization of their symptoms, is that IVIG limited inflammatory responses and thus slowed the progression of disease.

 Alzheimer’s and Inflammatory Cytokine Levels
This supposition is further supported by the fact that animal models suggest that excessive production of inflammatory cytokines, inflammatory messages, are implicated in Alzheimer’s disease. These animals have a condition similar to human Alzheimer’s, and also have higher levels of inflammatory cytokines in their blood.  When a drug was administered that inhibited the cytokines, there was less damage to nerve cells and neurological outcomes in the animals improved.  

 The scientists suggest that blocking production of high amounts of inflammatory cytokines may be beneficial for any number of brain conditions, such as “Alzheimer’s and Parkinson’s disease, multiple sclerosis (MS), motor neurone disease, frontotemporal dementia, and complications from traumatic brain injury.” (1)

 Immune Homeostasis, Immune Balance the Key to Health
Thus improvements, or at least delay in the onset of Alzheimer’s, or other brain –associated conditions, may be associated with the body achieving immune homeostasis.  A body in inflammatory balance controls the immune system’s  inappropriate inflammatory responses which otherwise may lead to damage of bystander tissues.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.

 


www.medpagetoday.com/MeetingCoverage/AAIC/33780
http://emedicine.medscape.com/article/210367-overview#aw2aab6b3
www.alz.org/aaic/tues_1030amct_ivig_trial.asp
www.jneurosci.org/content/32/30/10201.abstract?sid=349221d1-e12f-411a-80a6-80285ed5db54
www.ncbi.nlm.nih.gov/pubmed/22806462

css.php