Welcome to Delicate template
Header
Just another WordPress site
Header

Over the last 18 months, at least 25 children have been affected in the California area by a “polio-like” illness resulting in partial paralysis of five of the children.  As of this week, two out of five of these children have tested positive for enterovirus.  According to the news media, Australia and Asia have also report similar cases.

A commonly found virus, enteroviruses typically result in only mild symptoms such as runny nose, coughing, muscle aches, and sneezing. However, there are 60 different varieties of enteroviruses, and infection with certain types of these viruses results in spontaneous abortion, stillbirth, and congenital anomalies.  Infection with other varieties of enteroviruses can lead to damage of various tissues including skin, muscles, brain, spine, nerve cells, liver, and heart.

Some enteroviruses appear to specifically target the brain and the nervous system, leading to short- or long-term paralysis affecting mobility. So for example, polio enteroviruses attack the nervous system triggering an inflammatory response to destroy the viruses.  The resulting inflammation may lead to mild paralysis, or to an individual becoming completely paralyzed within hours.

Some persistent enteroviruses survive in the body for a prolonged time with continued inflammation and damage to tissues.   So for example, polio patients that initially recover from their disease may continue to experience damage of nerve and muscle cells by inflammatory processes.  This resurgence of symptoms can result in a post-polio syndrome (PPS) years after their original exposure to the virus.

Individuals with post-polio syndrome have high levels of inflammatory cytokines, immune factors, in the spinal fluids between the thin layers of tissues that protect the spinal cord.  Other conditions resulting from enterovirus infection are often associated with the production of inflammatory molecules. Even patients with relatively mild symptoms and no nervous system complications may show increased blood levels of inflammatory immune factors.  This suggests that excessive inflammatory responses are occurring throughout the body.

A delicate balance exists between inflammatory and anti-inflammatory responses of the body.  The immune system is always on alert defending itself against infection.  However, once the process is triggered, the inflammation must be a measured, controlled response that does not destroy healthy tissue.

www.decodedscience.com/polio-like-virus-california-enterovirus-68-paralyzing-kids/43034
www.ncbi.nlm.nih.gov/pubmed/18219253
www.ninds.nih.gov/disorders/post_polio/detail_post_polio.htm
www.ncbi.nlm.nih.gov/pubmed/24367714
www.enterovirusfoundation.org/associations.shtml
www.ncbi.nlm.nih.gov/pubmed/22776106
 

Blood disorders are diseases that affect blood components: 1) red blood cells, 2) white blood cells, and/or 3) platelets.

 Red blood cells are disc-shaped cells that carry oxygen from the lungs to all the cells in the body White blood cells are immune cells that help the body heal, and protect itself from infections and cancerous cells that might grow into tumors or cancers of the blood.  Platelets are blood elements that stick to the lining of blood vessels and help the blood to clot when  bleeding from a wound.

 Some common blood disorders are  anemia, thalassemia, sickle cell anemia,  idiopathic thrombocytopenic purpura (ITP),pernicious anemia,  hemolytic anemia, and aplastic anemia.

 All of these disorders have a single commonality, mainly that individuals with these types of conditions have low numbers of red cells, white blood cells, and/or platelets.

 Inflammation is necessary for our survival. Invasion by pathogens initiates inflammatory processes that attack these organisms. However, too often the “forest fire” gets out of control, and healthy cells, tissues, and organs are damaged.  When the body attacks its own cells, the condition is called an autoimmune, against -oneself, response.

 Thalassemia is an inherited disease in which people have abnormally low numbers of red blood cells and low hemoglobin. The hemoglobulin molecule is faulty and unable to carry its typical complement of oxygen.  [Hemoglobin is a protein that  helps  transport oxygen throughout the body.  Red blood cells also carry waste gases like carbon dioxide  to the lungs where it is released and then exhaled.]

 Individuals with thalassemia often suffer from inflamed blood vessels and slower blood flow in their blood vessels.  Both problems put individuals at greater risk of suffering from thromboembolism.  In this condition, a blood clot, an embolus, partially or totally blocks blood vessels deep in the body (deep vein thrombosis) or a clot is released that suddenly interferes with blood flow within a lung artery (pulmonary embolism), which can be fatal.

As blood clots form, an inflammatory response is triggerred to break up the clots.  More inflammation results in the production of more cytokines, immune messages that affect blood clotting.  Individuals with thalassemia, as with other blood disorders, typically have higher levels of inflammatory cytokines than individuals without such conditions.

It never ceases to amaze me how many health practitioners ignore the contribution of inflammatory process to diseases such as thalassemia.  In blood disorders, as with most other diseases, achieving and maintaining immune inflammatory homeostasis, balance, is essential.

 Being in homeostasis means that there are enough immune factors, pro-inflammatory cytokines to initiate a proper inflammatory response, and corresponding anti-inflammatory factors to limit inflammation and the damage it may cause.  A delicate balance of these messages are essential.

 What does one lose by moderating excessive inflammatory responses?  Control inappropriate levels of inflammation, and improve the quality of life of those with blood disorders, and most other diseases.

 [Please look for future posts on other blood disorders such as sickle cell anemia, pernicious anemia, and idiopathic thrombocytopenic purpura (ITP)].

 There is no cost to readers of these posts to speak with Dr. Hellen.  She can be reached at 1.302-265.3870 [USA] or contacted at:  drhellen@drhellengreenblatt.info .

 

www.nhlbi.nih.gov/health/public/blood/
www.nhlbi.nih.gov/health/health-topics/topics/pe/
www.sciencedirect.com/science/article/pii/S1079979609001387
bloodjournal.hematologylibrary.org/content/87/12/5051.full.pdf

 

 

We humans exist in sea of microorganisms. According to the American Society for Microbiology, there are 10 fold the number of bacteria living in and on our bodies as cells that make up our bodies. Wherever our bodies are exposed to the outside world, for example our digestive tracts, skin, mouth, vagina, etc. we find specific varieties of bacteria and other organisms.

The totality of all the bacteria and other microorganisms that populate our bodies is called the microbiome. The microbiome is highly individualized, with the spectrum of bacteria differing from one person to another; much like an individual’s fingerprints. All people display wide variations in the kinds of bacteria that inhabit them. The types and numbers of bacteria in and on our bodies differ depending on our genetic makeup, our diet, and environmental factors.

Immune cells are found throughout the body where they are always on alert defending the body against infection. Inflammation is the primary way that the immune system controls infections and healing, but overactive immune responses can lead to debilitating inflammatory diseases such as atherosclerosis, diabetes, and bowel disorders.

There is considerable “cross-talk” between the microbiome and the immune cells. Microorganisms influence the responses of the immune system, and the immune system in turn affects the populations of the organisms that inhabit us. For example, evidence suggests that certain bacteria in the gut can decrease inflammation in the gut and decrease chronic disease. [Whether the organisms themselves are producing these molecules, or whether they are triggering immune cells to release anti-inflammatory compounds is not clear.]

Celiac Disease and Diabetes:
Individuals with celiac disease are highly sensitive to foods containing gluten, a protein found in barley, rye, and wheat. People with celiac disease have significant quality of life issues such as bloating, diarrhea, and/or constipation.

When the immune cells of celiacs see gluten, they mount an inflammatory response to try to eliminate the gluten from the intestines. The immune cells produce antibodies that attach to the inner surface of the gut and through inflammatory responses cause direct damage of the gut lining. Inflammatory responses against the body’s own tissues lead to autoimmune (against oneself) disease.

Diabetes is also the result of an autoimmune condition. Inflammatory immune cells destroy specialized cells in the pancreas that produce insulin, a hormone needed to control blood sugar.

Individuals with celiac disease have more than digestive issues, since they have almost 2.5 times a greater chance of developing diabetes than those without intestinal problems. Such conditions are associated with antibodies directed against the insulin-producing cells. When Individuals with celiac disease go on a strict gluten-free diet, they produce fewer anti-insulin-antibodies, suggesting that they are producing less of an inflammatory response.

Gluten intake changes the kinds of bacteria found in the gut. Diabetic-prone mice that eat regular mouse chow containing gluten are more likely to get diabetes than diabetic-prone mice on gluten-free chow. In addition, when the gut bacteria are analyzed, the diabetic-prone mice on gluten have the type of bacteria more often associated with inflammation, than the mice not on gluten. Thus, diet affects the responses of the immune cells and the microbiome.

As followers of this blog are aware, in the face of constantly changing external and internal challenges, the immune system of a healthy person makes adjustments to maintain immune balance, immune homeostasis.

One would expect that if inflammatory and autoimmune responses were better controlled by the body, that individuals with celiac disease and diabetes would experience a far better quality of life.

www.ncbi.nlm.nih.gov/pubmed/22699609
www.ncbi.nlm.nih.gov/books/NBK27169
www.ncbi.nlm.nih.gov/pmc/articles/PMC3256734
www.ncbi.nlm.nih.gov/pmc/articles/PMC2575488
www.ncbi.nlm.nih.gov/pubmed/22913724
www.ncbi.nlm.nih.gov/pubmed/24164337
www.ncbi.nlm.nih.gov/pubmed/24041379 www.sciencedaily.com/releases/2013/11/131113182423.htm
www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0078687

Alcoholism is a condition in which individuals drink alcohol in excess despite the fact that their habit causes physical and mental health problems, and social, family, and/or job-related issues. Heavy alcohol consumption results in damage to many parts of the body including the brain, liver, digestive system, and  joints. Alcoholics also suffer with dementia, memory loss, depression, emotional instability, and are at increased risk of cancer of the colon, liver, and esophagus.

Immune System Effects

Prolonged, heavy alcohol consumption negatively affects immune cells and their production of cytokines, immune messages.  Alcoholics have significantly higher rates of bacterial and viral infections and when hospitalized remain hospitalized longer than those that do not abuse alcohol.   Alcohol not only kills key immune cells, but excess amounts of alcohol results in an increased risk of autoimmune responses in which the body’s immune cells mistakenly attack the body’s own healthy cells as foreign.

The body constantly strives to maintain immune inflammatory homeostasis; to balance the amount of inflammation it produces to protect the body from infection.  Imbalances of inflammatory responses, loss of immune homeostasis, result from excessive alcohol consumption. For example, white cells, immune cells, search out and destroy and remove pathogens from the lungs.  After alcohol consumption, fewer immune cells respond to the call for “help”.  Those cells that do enter the lungs are unable to kill microbes as effectively as cells from non-alcoholic animals.

The inefficient immune responses of alcoholics lead them to be more vulnerable to viral infections such as hepatitis C, influenza, and HIV and bacterial infections including tuberculosis and pneumonia. Especially after experiencing trauma, e.g., surgery, alcoholics are more likely than non-alcoholics to get pneumonia.

A mouse study is one of many that demonstrates the decreased ability of alcohol-imbibing animals to fend off infection.  Sixty percent of mice that were exposed to the flu after imbibing alcohol for two months died of the flu as compared to a 15% mortality rate of mice that had not been drinking alcohol prior to exposure.

Hormone Effects:

Cortisol, the “stress-response hormone” affects nervous, immune, circulatory, and metabolic systems of the body.  After surgery, chronic alcoholics have higher cortisol levels compared to non-alcoholic patients.  The increased inflammation that accompanies stress also leads to higher levels of depression, other addictions, and mood disorders.

Other hormones effected by alcohol consumption are those a)that may interfere with the a women’s menstrual cycle, b) the ability for men and women to enjoy sex, or c) control blood sugar.

Nervous System Complications:

Alcohol is neuro-toxic to brain cells interfering with the development, repair, and communication of nerve cells. Consumption of large amounts of alcohol leads to shrinkage of white matter in the brain, adding to depression, confusion, short-term memory loss, “fuzzy” thinking, and a greater risk of getting dementia.  Alcohol also directly affects the nervous system in other ways, causing numbness, tingling, and pain in hands and feet.

Additionally, too great a consumption of alcohol, especially over a long period of time, results in problems with absorption of nutrients, the lack of which can become so severe that certain forms of dementia are triggered.

Bone Loss

Alcohol damages osteoblasts, the cells needed to grow and maintain bone.  Destruction of osteoblasts results in decreased bone mass and susceptibility to fractures and other orthopedic problems.  When a bone fracture occurs,  immune cells rush in to start the healing process. They release immune signals, cytokines that start the inflammatory process that recruits more cells into the area. However, when there is too much inflammation, healing, and bone growth is delayed with the result that bones become brittle, thin, or misshapen.

Vitamin B12, vitamin D,  phosphate, and magnesium are needed to grow bone.  Excessive intake of alcohol is associated with low or subnormal levels of these elements, further inhibiting the growth of and repair of bones.

Skin and Injuries

The cells in the skin help defend the body from pathogens, and keep the skin healthy, youthful, and supple.  The immune cells in the skin interact with the microbes that live on the surface. Although the numbers of bacteria on healthy skin stays constant, the types of bacteria that exist change depending on environmental and immune interactions

Heavy use of alcohol significantly slows the movement of immune cells, upsetting the balance, the homeostasis of the skin. Alcoholics experience a greater number of severe skin infections than individuals that drink responsibly.

Almost half of all patients coming into an emergency room with an injury, trauma cases, have high levels of alcohol in their blood.  Drunken patients have more severe symptoms, and take longer to recover.  They also have higher rates of death as compared to non-intoxicated patients.

Because these patients have imbalances of inflammatory response, it takes them longer to heal, and wounds may become more severe, more quickly. Alcohol damage to the skin continues even after they stop drinking. Alcoholics experience longer hospital stays, especially if they are patients in an intensive care unit.

In a study of two groups of animals with burns, 50% of the animals that had not consumed alcohol survived, compared to 20% of the alcohol-consuming animals.

Summary:

Although not discussed in this post, moderate intake of alcohol has a beneficial effect on inflammatory markers.  However, heavy drinking results in uncontrolled amounts of inflammation leading to a myriad of health consequences.  Controlling the amount of inflammation the body produces will make a major difference in the quality of life of an individual.

Some steps abusers of alcohol can take to help their body modulate inflammation are:

  •  Limit the number of drinks consumed*
  •  Exercise 30 minutes/day for 5 days a week (150 minute minimum/week)
  •  Have smaller food portion sizes.
  •  Consume more fruits and vegetables.

*It is recommended that women limit their alcohol intake to one drink** per day, and men to two drinks/day. [Women absorb and metabolize alcohol differently from men and are more susceptible to alcohol-related organ damage and trauma than men.]

**One drink is defined as 1.5 fluid ounces of 80-proof distilled spirits, 12 ounces of beer, or 5 ounces of wine (a pinot noir wine glass about 1/4 full).

Dr. Greenblatt  looks forward to assisting you in reaching your goals:   http://drhellengreenblatt.info/contact-dr-hellen or 1.302-265.3870 [USA, ET].

 

www.nlm.nih.gov/medlineplus/ency/article/000944.htm
eurheartj.oxfordjournals.org/content/25/23/2075.full
 www.ncbi.nlm.nih.gov/pubmed/21193024
www.ncbi.nlm.nih.gov/pmc/articles/PMC2377009/
www.ncbi.nlm.nih.gov/pubmed/23895590
www.ncbi.nlm.nih.gov/pmc/articles/PMC2906126/
www.ncbi.nlm.nih.gov/pubmed/24138635
www.ncbi.nlm.nih.gov/pmc/articles/PMC3005009/
www.ncbi.nlm.nih.gov/pubmed/23240627
pubs.niaaa.nih.gov/publications/10report/chap04b.pdf

www.ncbi.nlm.nih.gov/pubmed/23981442

 

 

 

Endometriosis* is a painful, hormonal and immune system disease in which tissues similar to the mucous membranes lining the uterus (endometrium), end up in “strange” locations, places that these sorts of tissues are not typically found. The pockets of tissue react to monthly surges of estrogen and progesterone just like the uterus. These cells can be found, for example, outside the uterus, around the ovaries, fallopian tubes, the abdominal cavity, bladder, cervix, or bowels, and can become irritated and inflamed during the reproductive cycle. Eventually the condition may result in scarring and adhesions, abnormal tissue that binds organs together like a spider web.

Autoimmune Contribution?
Some scientists suggest that in endometriosis the immune cells of the woman are unable to recognize the presence of these “displaced” tissues and that the cells are not destroyed as they normally would be. Women with endometriosis, besides having greater inflammatory responses, often produce autoantibodies (antibodies against healthy tissue) and immune factors that lead to inflammatory conditions.

Endometriosis is a complex disease in which many factors, including genetic, one’s anatomy, and one’s environment all contribute to the problem. Endometriosis is associated with a disrupted inflammatory and hormonal environment in which growth factors and immune factors, such as cytokines, exist at increased levels. Women with endometriosis may exhibit excessive growth of blood vessels and nerve cells in their pelvis, which may “feed” the pain.

Symptoms
Endometriosis may be accompanied by heavy bleeding at anytime during the menstrual cycle, with severe pain becoming especially acute during menstruation. Pain and cramping may begin before, and extend several days into a women’s menses, and she may experience lower back and abdominal pain, bloating, diarrhea, fatigue, and malaise. Pain may be present during or after sex, and with urination, or bowel movements.

The severity of the pain experienced is an unreliable indicator of the extent of the condition. For example, women with mild endometriosis may have extensive pain, while others with advanced endometriosis may experience little or no pain.
Endometriosis can develop in girls as young as eight, or years after the onset of menstruation. While many women find that symptoms of endometriosis temporarily stop during their pregnancy, and/or completely with menopause, this is not always the case.

The main complication of endometriosis, besides excruciating pain, is infertility. Thirty to fifty percent of women suffering with endometriosis have difficulty getting pregnant.

Inflammation
Endometriosis is associated with an inflammatory environment of the pelvis. Different types of cytokines, immune factors, and growth factors are elevated in these individuals. For example, IL-8 is an inflammatory cytokine associated with inflammatory responses. The amount of Il-8 present in the body is strongly correlated with the severity of the disease, and contributes to the formation of adhesions.

Lean vs. Obese Women
In a study of younger women, the risk of endometriosis later in life was 40% lower in morbidly obese women as compared to lean women. The latter group had a nearly 3-fold greater risk of developing endometriosis than the obese women. This finding is contrary to expectations, since typically, obese women are at greater risk of inflammatory-mediated diseases than leaner women, and therefore would be expected to be at greater risk of developing endometriosis.

 [As an aside, heavy women that engage in regular, moderate to vigorous physical activity, lower their risk for endometrial cancer and other diseases. This result is expected, since every time muscle cells contract, they release potent anti-inflammatory molecules which balance the amount of inflammation generated by fat cells.]

Toxic Chemical Exposure
Dioxin is a toxic byproduct of industrial and consumer processes that involve chlorine or incineration of chlorine-containing substances, such as PVC, polyvinyl chloride, commonly known as “vinyl” plastics.

Exposure to dioxin and dioxin-like compounds have been shown to disrupt immune and hormonal balance and such chemicals have been implicated in the development of endometriosis and other diseases.

Non-Clinical Approaches
Physicians commonly recommend surgery and pharmaceutical approaches for endometriosis, but “alternative” approaches have been found to be helpful to others. For example acupuncture has been shown to be an effective pain treatment for some individuals. Additionally, eating a healthful diet, regular exercise, and certain amino acids may prove helpful.

Personal Note
I would be negligent if I did not mention that over a decade ago, a young researcher from West Virginia reported to me that a large number of women in a West Virginia community had been diagnosed with endometriosis. She was researching this problem, and unfortunately, she herself had endometriosis. I suggested a gradual introduction of a daily administration of 9-12 grams of polyvalent hyperimmune egg, a whole-egg protein from specially treated hens.

After a number of weeks the researcher reported back to me that her quality of life had improved dramatically. Unfortunately, I have lost contact with the investigator, so cannot report further on any changes she may have experienced.

Importance of Immune Homeostasis, Immune Balance
The key to endometriosis, as with most disease, is run-away inflammation. Therefore, achieving immune, inflammatory, homeostasis (balance) in individuals with endometriosis, may result in major differences in their quality of life.

Dr. Hellen can be contacted at: http://drhellengreenblatt.info/contact-dr-hellen/ or 1.302-265.3870 [USA, ET].

*Interested parties may contact support@endometriosisassn.org for a free information packet on endometriosis.

www.nmihi.com/e/endometriosis.htm
www.ncbi.nlm.nih.gov/pubmed/21054165
www.ncbi.nlm.nih.gov/pubmed/11949939
http://humrep.oxfordjournals.org/content/28/7/1783Share
www.endometriosisassn.org/environment.html
http://toxsci.oxfordjournals.org/content/70/2/161.full

 

From 70-85% of the immune system and immune-like cells are found in the lining of the gut. This complex network of cells helps the body discriminate between helpful, commensal bacteria, and pathogenic bacteria that cause illness.

There is significant cross-talk between the immune cells and the organisms living in the intestines.
The immune system in the intestines is constantly balancing the kinds and numbers of bacteria and other organisms that live in the gut. And the bacteria are changing the population of immune cells. Both work to try to achieve balance, immune homeostasis.

Chronic inflammation of the digestive tract may be a reaction against specific bacteria found among the trillions of microorganisms living in the intestines. Inflammatory bowel diseases, IBDs, are characterized by unhealthy levels of inflammation occurring in different sections of the intestine. The bacterial strains found in the GI tracts of IBD patients differs from those seen in healthy controls and IBD patients have the most amount of inflammation in the areas of the GI tract with the highest concentration of bacteria.

Many of the cells in the gut directly recognize and attack infectious organisms. Upon exposure to pathogens, intestinal immune cells are stimulated to generate immune molecules such cytokines and natural antibiotics called defensins. Defensins kill microorganisms by punching holes in their membranes, or linking up small proteins into a “net” that stops pathogens from crossing the gastrointestinal barrier. These molecules also help the immune system control the types and numbers of beneficial microbes populating our intestines, and help in the recruitment of additional immune cells.

Individuals with IBD have imbalances of immune cells and intestinal microbes and without a sufficient immune response intestinal microbes invade the mucosa and an inflammatory response is triggered.

The intestines strive to achieve and maintain a delicate homeostatic balance. Complex interactions between the microorganism and immune components keep the beneficial bacteria “content” while simultaneously using inflammatory processes to keep infectious agents in check.

The key in recovery is to help the body limit unhealthy inflammation. Probiotic bacteria have been the first therapeutic agents for IBD shown to induce the production of defensins. Other agents such as worms, worm eggs, vitamin D, specific bacteria, and omega-3 appear to modulate inflammatory cytokines in test systems, yet these approaches have failed to correlate strongly with reducing IBD or its symptoms.

http://iai.asm.org/content/76/8/3360
http://www.sciencemag.org/content/337/6093/477.abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423246
http://www.ncbi.nlm.nih.gov/pubmed/23398152
http://www.ncbi.nlm.nih.gov/pubmed/23176791
http://www.ncbi.nlm.nih.gov/pubmed/19800289
http://www.ncbi.nlm.nih.gov/pubmed/?term=morningstar+hyperimmune+egg

 

People often ask how they ended up getting an autoimmune disease, a condition in which their own immune system turns on themselves and destroys healthy by-stander tissues and organs.

My response-the not-yet-proven-hypothesis that molecular mimicry results in autoimmune disease.

Molecular mimicry is a phenomenon in which tissues in the body share a “barcode”, antigenic receptors,  with specific viruses or a bacteria.  The immune system responds by mounting an inflammatory attack against the invading pathogen.  This response targets not only the pathogen, but in addition, tissues that share the same antigenic makeup as the invading microorganism. In short, a terrible error occurs and the body starts destroying itself.

The inflammatory disease rheumatic fever is an excellent example of the possible outcome of molecular mimicry. Damage of heart valves may occur after infection with the bacteria Streptococcus. This development accounts for the panic that many parents experience when their kids come down with “strep throat”.

Antibodies, large unique proteins,  are produced by the immune system when the body is exposed to pathogens.  These specialized proteins attach to the invaders, “flagging” them for destruction by circulating immune cells.  In the case of rheumatic fever, since bacteria and heart valve tissue look alike to the body, antibodies are produced that attach to both surfaces, triggering inflammatory immune responses ultimately resulting in damage to heart valves, as well as death of the bacteria.

The data, controversial, but compelling, is that molecular mimicry, due to viral and bacterial infections,  may also be a trigger for neurological disease.

This concept is reinforced by the fact that multiple sclerosis is a condition in which nerve cells are damaged by uncontrolled levels of inflammation.  Immune cell products mistakenly attack myelin proteins, which make up the protective sheath that “insulates” nerves.  Damage to this covering results in nerve signals becoming intermittent, slowing down, or stopping entirely.  Such nerve damage affects vision, mobility, coordination, balance, bladder, or bowel control.

 A large body of data suggests that infection with herpes virus 6 and/or Epstein-Barr virus triggers  inflammation that leads to nerve cell destruction.  Different viruses and bacteria have been implicated as initiating inflammatory responses in other neurodegenerative diseases as well.

 To understand the role of excessive inflammation in your own condition, enter the condition in combination with the word “inflammation”.  The results you receive will help you understand the importance of achieving immune homeostasis, immune balance of our inflammatory responses.

Let me help you improve your quality of life, naturally. Please contact me at 302.265.3870 (USA ET) or email: DrHellen@DrHellenGreenblatt.info

http://www.bjmp.org/content/role-chronic-bacterial-and-viral-infections-neurodegenerative-neurobehavioral-psychiatric-au
http://www.ncbi.nlm.nih.gov/pubmed/22617826
http://www.ncbi.nlm.nih.gov/pubmed/18193392
http://www.ncbi.nlm.nih.gov/pubmed/9761770
http://www.ncbi.nlm.nih.gov/pubmed/22201827
http://www.ncbi.nlm.nih.gov/pubmed/12557285
http://www.ncbi.nlm.nih.gov/pubmed/21859892

People will go to almost any length to get rid of their illnesses.  Last month, a TV news program reported that a financial analyst from New York swallowed 2500 pig whipworm eggs, every two weeks for three months. He was driven to this “solution” because he had been suffering with Crohn’s since being a teenager, had had much of his bowels surgically removed, but still had severe symptoms.  He found that drinking the solution of worm eggs made a major difference in his disease.

Crohn’s disease is an inflammatory disease of the digestive system, typically designated as an autoimmune condition.  In such illnesses, the body’s own immune system mistakenly destroys various portions of its own bowels.

Symptoms can develop gradually or come on all at once.  One may experience only mild amounts of inflammation, or the inflammatory response can be severe enough to cause scarring.  Individuals may go long periods without experiencing any discomfort at all.

When the disease is causing problems, the inflammation can result in intestinal pain and ulcers on the surface of the bowel, diarrhea, bloody stools, and involuntary weight loss and reduce appetite.

Dr. Joel Weinstock, of Tufts Medical Center in Boston, MA is a world authority on inflammatory conditions of the intestine with a clinical specialty in inflammatory bowel diseases such as Crohn’s disease.  He and his colleagues are in the midst of clinical trials to obtain evidence that the ingestion of parasites, such as whipworms will “dampen” inflammatory responses of individuals with Crohn’s.

Exposure to gastrointestinal parasites affects the production of cytokines, immune factors that either trigger, or inhibit, inflammation.  Whipworms can inhibit the production of inflammatory cytokines that contribute to Crohn’s symptoms; they support anti-inflammatory responses in some cases..

Omega-3 fatty acids from fish oil and vitamin D3 are reported to have anti-inflammatory properties and therefore might help those with Crohn’s and other autoimmune diseases. However a recent review of the literature does not support the use of omega-3  to help alleviate symptoms  in Crohn’s patients.

Studies of Vitamin D, a substance that regulates inflammatory and other immune responses, suggest that individuals with higher levels of vitamin D in their blood are at less risk of getting Crohn’s disease.

Additionally, hyperimmune egg has been reported to support bowel health, and with many reporting rapid changes in digestive function.

Instead of drinking a concoction of worms, consuming egg protein from specially-selected hens, hyperimmune egg, makes more sense for digestive support than ingesting worms!

Dr. Hellen looks forward to personally answering your questions.  Send a note to DrHellen@DrHellenGreenblatt.info or click on: http://drhellengreenblatt.info/contact-dr-hellen/.  She can also be reached at: 1.302-265.3870 [USA, Eastern Time].

 

http://www.mayoclinic.com/health/crohns-disease/DS00104/DSECTION=symptoms
http://www.ncbi.nlm.nih.gov/pubmed/22239614
http://www.ncbi.nlm.nih.gov/pubmed/22841731
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646983/
http://www.google.com/patents/US5772999?printsec=abstract#v=onepage&q&f=false

 

A healthy immune system controls the amount of inflammation the body uses to defend itself from infection and mutating cancer cells, and to help its healing processes. The body has to control the intensity of its inflammatory responses so that it doesn’t attack healthy, “by-stander” cells and tissues.  [When the body attacks its own self, an autoimmune response, conditions such as arthritis, lupus, and diabetes result.]  To control inflammation means that the body has to stay balanced all the time.  When inflammatory responses are balanced the body is in immune/inflammatory homeostasis.

Immune homeostasis, immune balance is what keeps cancer in check.  Too much inflammation may trigger cancer cells to grow and multiply, and they in turn may trigger more inflammation to occur. 

 Cigarette smoke has carcinogens, compounds, that cause genes to mutate, or to switch on and off, phenomena known as epigenic events.  Additionally, exposure to cigarette smoke stimulates the release of inflammatory cytokines, molecular messages produced by immune cells.  When these molecules are released into the body they may cause imbalances in the inflammatory process, and a loss of immune homeostasis, immune balance.

Smoking results in the perfect “cancer storm”, because cigarette smoke not only cause inflammation, but it also contributes to angiogensis, the growth of new blood vessels that tumor cells use to grow and multiply in numbers.

 Normally, there is a balance of growth-stimulating and growth-inhibitory molecules so that blood vessels form only when and where they are needed, for example when blood vessels are damaged. 

However, cancer cells upset signaling and the body starts produces fresh blood vessels. These blood vessels “feed” growing tumors with oxygen and nutrients, allowing the cancer cells to invade nearby tissues and to migrate throughout the body, metastasizing, and forming new colonies of cancer cells.

 A study from the National Cancer Institute published this month, analyzed 1400 different inflammatory and immune genes from lung cancer patients and healthy individuals.  In 44 genes there appeared to be an association between lung cancer and certain genetic differences in the cells.

 The scientists focused their work on an important inflammatory gene and found that individuals with a specific type of gene linked to inflammation had a 21% to 44% lower likelihood of getting lung cancer than those with a different form of the same gene.

 Once again, the key is that the body needs to stay in balance, and if you maintain balance, especially  immune inflammatory homeostasis, your quality of life will be changed forever.

 Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her.  A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.

 
http://www.cancer.gov/cancertopics/factsheet/Therapy/angiogenesis-inhibitors
http://www.ncbi.nlm.nih.gov/pubmed/21751938
http://www.freep.com/article/20121008/FEATURES08/121008047/Scientists-link-gene-to-lower-risk-of-lung-cancer?odyssey=nav%7Chead
http://www.news-medical.net/news/20121008/NFKB1-gene-variant-may-reduce-risk-of-lung-cancer.aspx

Gut-associated lymphoid tissues are found in the walls of the intestine and contain billions of immune cells.  The white blood cells control the levels and types of bacteria that naturally populate the intestines.  The bacteria help to digest food that provides energy to the body,  and are part of the immune/bacterial ecosystem of the intestine.

 Interestingly, both immune cells and bacteria, protect the intestines from attack by pathogenic microorganisms, and cancer cells, and help heal the intestines when they are damaged.  Cross talk between the bacteria, and immune cells help the intestines maintain homeostasis, balance.  Each keeps the other in check.

 CELIAC DISEASE
Celiac disease is an intestinal, inflammatory, autoimmune (against oneself) disorder.  Individuals with celiac disease suffer from a wide-range of symptoms including diarrhea, fatigue, weight loss, inability to focus, skin and neurological issues, constipation, a feeling of being “bloated”, gas, anemia, headaches, osteoporosis (loss of bone density), and depression. 

 Ingesting grains, such as wheat, rye, and barley, which contain a component of protein called gluten, reportedly stimulate celiac disease.

 The presence of gluten stimulates sensitive immune cells to produce proinflammatory cytokines.  These immune messages drive inflammation, resulting in the destruction of the intestinal wall and symptoms.   Genetic, environmental, dietary, neuroendocrine, and immunological factors all contribute to disease progression.

 Currently, the primary guidance that celiacs get, is to go on a “gluten-free” diet.  Although it may be effective for some people,  such diets are restrictive, expensive, and do not work well for everyone.  In one study, every patient, 100% of those surveyed, in a cohort of 300 individuals, hoped for another option.

 OTHER APPROACHES
I often hear from people with autoimmune challenges such as celiac disease, “it’s genetic”.  Fine, so your genes are partially to blame. Meanwhile, what will you do? Continue to be uncomfortable?  So I ask those with inflammatory issues, why not consider short-term approaches until researchers discover longer-term solutions?  In three words: limit excessive inflammation.

 I like to describe inflammation as a way that the body “burns” out pathogenic microorganisms and cancer cells. The body must produce enough inflammation to protect itself from disease, and help the healing process, but not so much that healthy tissue, for example the intestinal lining, is damaged.

 Nutritional Approaches
Vitamin C and omega-3 fatty acids, from fish oil, inhibit the production of proinflammatory cytokines. (There is however,  evidence that vitamin A increases inflammatory processes.).

 Medical Approaches
Antibodies against specific inflammatory cytokines reduce intestinal injury in celiac disease, and the administration of corticosteroids, along with a gluten-free diet, was reported, in a small clinical trial, to provide benefit to celiac patients.

 Immunological Homeostasis/Balance
Hyperimmune egg, an ingredient that helps the body return to immunological balance, helps to support gastrointestinal health.  Many individuals with digestive issues report daily consumption of hyperimmune egg leads to major differences in their quality of life.

 LIMIT INFLAMMATION FOR BETTER HEALTH
The key to a higher level of quality of life in celiac and other autoimmune and autoinflammatory conditions, is to help the body limit its excessive inflammatory responses.  Removing gluten from one’s diet, using vitamin C, omega-3, corticosteroids, and hyperimmune egg, may contribute to helping the body regulate run-away inflammation.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.


www.cell.com/cell-host-microbe/retrieve/pii/S1931312812000662

 www.medscape.com
 www.nature.com/nature/journal/v471/n7337/full/nature09849.html
www.nature.com/nature/journal/v471/n7337/full/nature09849.html
www.nature.com/nature/journal/v474/n7351/full/nature10208.html
www.ncbi.nlm.nih.gov/pubmed/18667914
www.ncbi.nlm.nih.gov/pubmed/22024540
www.ncbi.nlm.nih.gov/pubmed/22109896
www.ncbi.nlm.nih.gov/pubmed/22606367
www.ncbi.nlm.nih.gov/pubmed?term=morningstar%20hyperimmune%20egg
 www.sciencedaily.com/releases/2008/11/081114185942.htm
www.sciencedaily.com/releases/2012/04/120426105654.htm

 

Alzheimer’s and IVIG Rx
Last week John Gever, Senior Editor, MedPage Today brought attention to the results of a small study presented at the 2012 Alzheimer’s Association International Conference held in Vancouver, British Columbia.  In this study, patients with mild to moderate Alzheimer’s were given antibody preparations, immunoglobulin preparations, which were obtained by pooling plasma from numerous blood donors.  This sterile, medical product, IVIG, intravenous immunoglobulin, consists mostly of immunoglobulins, antibodies,  and is administered intravenously (IV). 

After receiving IVIG twice a month for three years, patient’s ‘ ability to function or think, their mood, or memory did not worsen over the three years. [Untreated Alzheimer’s disease patients typically show measurable declines in 3 to 6 months.]

The FDA, The U.S. Food and Drug Administration, has approved the use of IVIG for only six conditions.  However, it has been used “off-label”, to try and treat about 50 other conditions, including infectious diseases, a wide-range of autoimmune conditions, organ transplant and cancer patients, blood, and neurological conditions to mention a few.

When practitioners are asked how s/he thinks IVIG works, the response is typically, except for infectious diseases, “we are not sure”.

 IVIG Contains Immunoglobulins and Smaller Immune Factors
IVIG contains antibodies to organisms such as streptococcus, hepatitis, measles, polio, etc., that can specifically neutralize infectious agents.  Other immunoglobulins may be directed  against specific immunological factors. 

However, viewing reported results in chronically ill populations, I have always been of the opinion that IVIG also contains cytokines, or cytokine-like immune molecules, with potent immune system-modulating properties, which help the body return to immune homeostasis, immune balance. 

 I suggest that the reason that Alzheimer’s patients receiving IVIG saw a stabilization of their symptoms, is that IVIG limited inflammatory responses and thus slowed the progression of disease.

 Alzheimer’s and Inflammatory Cytokine Levels
This supposition is further supported by the fact that animal models suggest that excessive production of inflammatory cytokines, inflammatory messages, are implicated in Alzheimer’s disease. These animals have a condition similar to human Alzheimer’s, and also have higher levels of inflammatory cytokines in their blood.  When a drug was administered that inhibited the cytokines, there was less damage to nerve cells and neurological outcomes in the animals improved.  

 The scientists suggest that blocking production of high amounts of inflammatory cytokines may be beneficial for any number of brain conditions, such as “Alzheimer’s and Parkinson’s disease, multiple sclerosis (MS), motor neurone disease, frontotemporal dementia, and complications from traumatic brain injury.” (1)

 Immune Homeostasis, Immune Balance the Key to Health
Thus improvements, or at least delay in the onset of Alzheimer’s, or other brain –associated conditions, may be associated with the body achieving immune homeostasis.  A body in inflammatory balance controls the immune system’s  inappropriate inflammatory responses which otherwise may lead to damage of bystander tissues.

Feel free to contact Dr. Hellen at DrHellen@DrHellenGreenblatt.info with questions or to consult with her. A message may also be left at: 1.302-265.3870 or click on: http://drhellengreenblatt.info/contact-dr-hellen/.

 


www.medpagetoday.com/MeetingCoverage/AAIC/33780
http://emedicine.medscape.com/article/210367-overview#aw2aab6b3
www.alz.org/aaic/tues_1030amct_ivig_trial.asp
www.jneurosci.org/content/32/30/10201.abstract?sid=349221d1-e12f-411a-80a6-80285ed5db54
www.ncbi.nlm.nih.gov/pubmed/22806462

For years, physicians told their (overwhelmingly female) patients, that patient complaints of skeletal and muscle pains, sleep disorders, overwhelming fatigue not improved by bed rest, brain “fog”, and lack of stamina, were “all in their mind”.

However once pharmaceutical medications were introduced into the market place to help decrease some of these symptoms, health practitioners started diagnosing these conditions as chronic fatigue syndrome, CFS or ME, myalgic encephalomyelitis.

Viral Involvement Controversial

In 2009, an article in the prestigious journal Science reported that 95% of subjects with chronic fatigue syndrome were infected with a specific virus and/or had antibodies to that virus. The investigational team emphasized that these findings did not prove that there was a link between this virus and chronic fatigue, but that the virus might be “a contributing factor”.

Late this past year, the editors of Science retracted the controversial article due to the poor quality controls, and omissions in the description of certain figures. Additionally, other laboratories have been unable to replicate the results.

This specific virus may not have been responsible for ME, but the concept is sound since other studies have suggested that bacterial and viral infections can trigger inflammatory immune diseases such as heart valve damage, arthritis, multiple sclerosis, diabetes, and systemic lupus erythematosus (SLE).

Autoimmune Inflammatory Conditions

Inflammatory diseases are often manifestations of an autoimmune inflammatory response. Autoimmune disease occurs when the immune system “over-reacts” to a stimulus and attacks its own cells with excessive inflammatory responses.

Digestive Tract-A Large Immune Organ

The lining of the digestive tract is heavily populated by immune cells and is considered a major immune organ. Many CFS patients complain of gut dysfunction, and have been diagnosed with irritable bowel syndrome (IBS) and with proinflammatory cytokine production.

Increase in Inflammatory Markers

Immunologically, individuals with chronic fatigue have increased blood levels of inflammatory compounds, such as C-reactive protein (CRP), and exhibit immunological abnormalities, including increased numbers of activated immune cells, and high levels of inflammatory cytokines, indicative of inflammation.

“… [T]he simplest way to think about … findings [such as these-HCG] is that people with increased inflammation–from whatever source–are more likely than others to develop a range of symptoms that frequently lead to a diagnosis of a condition such as CFS …” says William C. Reeves, MD, Chief of the Chronic Viral Diseases Branch, the Centers for Disease Control and Prevention (CDC). “

Role of Immune Inflammation

Immune inflammation helps defend the body from infection and heals the body after injury. However, when immune inflammation is in “overdrive”, autoimmune and other autoinflammatory conditions result.

Making certain lifestyle changes will contribute to lowering the amount of inflammation in the body. These are: a) becoming physically active so that muscle contractions generate naturally-occuring anti-inflammatory molecules and b) controlling one’s weight to reduce the levels of inflammatory compounds being released by fat cells.

Other steps to consider are moderate exposure to sunlight (or taking vitamin D3 supplements), consuming omega-3, and adding hyperimmune egg to one’s diet.

Immune Balance

Good health is determined by the balance between the pro-inflammatory and anti-inflammatory cytokines produced by our immune cells; maintaining these immune factors in their appropriate amounts, is essential.

www.sciencemag.org/content/326/5952/585
www.sciencemag.org/content/334/6063/1636.1
www.sciencedirect.com/science/article/pii/S0889159108004261
www.nutritionandmetabolism.com/content/7/1/79
www.ncbi.nlm.nih.gov/pubmed/19758205
cmr.asm.org/content/9/4/532.abstract
www.ncbi.nlm.nih.gov/pubmed/16380690
www.ncbi.nlm.nih.gov/pubmed/18801465

The immune system is responsible for helping the body heal itself after illness or injury, and to defend the body against attack from pathogens such as viruses, bacteria, and molds, and cancer cells that multiply too rapidly.

In some overly sensitive people however, the immune system may mistakenly view harmless substances, allergens (e.g., peanuts, pollen, dust mites, pet dander), as putting the body at risk of infection.

In response to an attack, the immune system produces large immune molecules called antibodies, immunoglobulins, along with smaller immune co-factors to help in the fight.

Individuals with allergies tend to have higher levels of immunoglobulin E (IgE), a class of antibody. IgE attaches tightly to special immune cells called mast cells. They are found in the skin and linings of the intestine, eyes, and nasal passages. Mast cells play a pivotal role in host defense, inflammation, and tissue repair.

Mast cells are pre-loaded with inflammatory factors. At the body’s next exposure to the allergen, the allergen binds to the IgE, like a key going into a lock, and triggers the release of mast cell biochemicals such as histamine, and small immune factors such as cytokines.

A number of studies suggest that men and women with allergies are at a lower risk of developing glioma, a brain cancer. Gliomas are among the most common and most rapidly growing brain tumors. Men and women with moderately higher levels of IgE, compared to clinically normal individuals, had statistically significant lower probabilities of developing gliomas.

However, as is usually the case in biology, more is not always better. Individuals with significantly elevated levels of IgE were not at a lower risk for developing malignant gliomas.

Look for future postings on the role of inflammation and cancer. Any search will reveal that inflammatory responses play major roles at different stages of tumor development. Since the relationship of inflammation, cancer, and immunological responses are under study, it is best to let the body do what it does best, and that is protect us from illnesses.

To optimize health, immune homeostasis, immune balance, is essential.


www.ncbi.nlm.nih.gov/pubmed/21726235
www.jnci.oxfordjournals.org/content/early/2011/10/17/jnci.djr361.abstract
www.nature.com/nri/journal/v4/n10/fig_tab/nri1460_F1.html
www.ncbi.nlm.nih.gov/pubmed/21978688

A recent guest post on kevinmd.com by Sophie Lee expressed her frustration and anger at physicians who dismiss her reports of pain with her severe bouts of irritable bowel syndrome (IBS). She repeatedly hears, “it isn’t really serious” “you will just have to live with it, etc.  [ www.ibstales.com ].

I just do not get why conventional “wisdom” is that IBS is not an inflammatory disorder. Perhaps pain is possible without inflammation, but that would be atypical. My contention is that if the immune system was in homeostasis, autoimmune disease would either not occur, or it would be limited.

For years I have been questioning “experts”, how is it that IBS is categorized as an autoimmune* disease, yet you claim there is no inflammatory response in the gut?

Current research supports my contention. Recent studies are providing evidence that low levels of inflammation, along with immune mast and other immune cells, are found in the small and large intestines. Mast cells are typically associated with allergic reactions such as runny noses, watery eyes, swelling, and excessive mucous. The mast cells in the intestines appear to be involved in immune homeostasis, in helping the immune system balance.

Interestingly, many of the immune cells found in the gut are in close proximity to nerve cells. .. “Cross-talk” between these cells may explain the pain and other symptoms that individuals experience, and support the hypothesis of a brain-gut axis event in IBS.

It is time for individuals that have “tried everything”, to give their bodies a chance to heal naturally. The immune system has caused the problem, and the immune system can be gently guided to down-regulate overly active responses.

The key to greater comfort may be as simple as helping the body return to immune homeostasis. I hold a patent in the area of immune homeostasis and gut health, and numerous anecdotal reports suggest that balancing immune inflammatory responses makes a major difference in the quality of life of such individuals. Additionally there is a published clinical report by Mark Morningstar, DC, Grand Blanc, MI supporting the relationship between immune homeostasis and healthy bowel function.

One has everything to gain by letting one’s own body rebalance and limit inflammatory responses.

*The immune system mistakenly attacks “self”, the body’s own healthy tissues.

ncbi.nlm.nih.gov/pubmed/22053295
sciencedaily.com/releases/2010/06/100607111308.htm
ncbi.nlm.nih.gov/pubmed/18627650
ncbi.nlm.nih.gov/pubmed/19674619
patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,803,035.PN.&OS=PN/6,803,035&RS=PN/6,803,035

A properly functioning immune system protects the body against infections by bacteria, viruses, fungi and other pathogens, and helps it heal. When our bodies detect a threat, or a stimulus that is “perceived” to be a threat, it orchestrates a delicate but highly aggressive immune inflammatory response to meet that threat.

There are two initial phases of immune responses:

  • Innate/early phase — a “built-in” or “automatic” response that is prepared at all times to defend the body against infection and cell mutations, such as those seen in cancers, and
  • Acquired– a more “educated” immune response that takes time to evolve in response to a specific trigger.

Inflammation is a complex event during which immune cells migrate into an area in response to various immune factors. These messages, such as cytokines, are used to to communicate and coordinate an organize attack against pathogens, or to help the healing process. After the threat has been resolved, other immune cells come in to carry away dead organisms and cells, and start the repair process.

A well-balanced immune system, a system in immune homeostasis, will mount enough of an inflammatory response to eliminate the threat, and then go on to repair damaged tissues. However, problems may arise if the immune system continues to generate an inflammatory responses after a challenge has been met —when inflammatory responses do not lower in intensity.

In such cases, the immune system is “over-responsive”; it is unbalanced, out of homeostasis. An over-active immune system leads to conditions where the body starts to destroy its own healthy tissue (e.g. diabetes, thyroid, lupus, multiple sclerosis, fibromyalgia, etc.) or it may lead to allergies and chemical sensitivities, or poor healing.

Many people have the mistaken impression that “boosting” immune function at all times is useful. This is simplistic. People with autoimmune conditions, such as those mentioned above, are already “over responding”. The last thing they need is to further “boost” their immune response, increase their autoimmune responsiveness.

Another example of “boosting” immune response is artificially increasing the level of natural killer (NK) cells within the body. NK cells often make up part of the body’s “early response”. “Boosting” numbers of certain white cells is unnatural and may cause other difficulties due to excessive numbers of these cells.

Increased levels of NK cells, as well as autoimmunity, have been associated with women who have difficulty conceiving. Women who have experienced spontaneous abortions and miscarriages, have higher than normal levels of NK cells.

Additionally, other types of specific immune cells, for example those that play a role in protecting the body from infection, may promote miscarriage and premature births, when they are at higher than normal levels.

The lesson here is that all of our immune cells and their components have to be balanced, or in a state of homeostasis, for our body to naturally heal and protect itself.

There are a number of simple steps that one can take to return the body to homeostasis, including using recovery proteins, exercise, smarter food choices, and maintenance of healthier weights.

http://www.ncbi.nlm.nih.gov/pubmed/20237962
http://www.ncbi.nlm.nih.gov/pubmed/20528832
http://www.ncbi.nlm.nih.gov/pubmed/21162648
 

Recently, a professional networking site directed me to a short note by Lisa Moreno-Dickinson, President of the stopcaidnow.org. The title of her article was “When Doctors Don’t Know How to Help From Misdiagnosis to No diagnosis … What Can a Parent Do?”.

CAID refers to Childhood Auto Inflammatory Diseases. These genetic disorders usually start in infancy or childhood and are reported to be the result of gene mutations. The periodic attacks of these conditions affect many different organ systems. They are characterized by sudden inflammation and fever onset, and symptoms such as rashes, headache, abdominal, chest, muscle, and joint pains, swollen joints and scrotum.

Much of the science suggests that these conditions are not autoimmune in nature. These individuals have no any significant elevations of autoantibodies, immunoglobulins, large immune molecules that are directed against self, nor activation of specific white blood cells.

Our knowledge of the complexities of the immune system, especially its inflammatory pathways, are still in their infancy as supported by the fact that cancer, colds, infectious, and chronic diseases are rampant.

I respectfully suggest that perhaps autoinflammatory investigators have not used the appropriate assay to find autoimmune responses because a) it does not exist yet, or b) it is difficult to “test for everything”.

A recent report suggests that there is an association between autoinflammatory conditions and mitochondrial health. Mitochondria are the power stations of a cell that provides it with the energy it needs to grow, divide, and “do its job”. They play major roles in healthy aging, degenerative diseases, cancer, and ultimately, cell death. The greater its metabolic or energy requirements, the more mitochondria a cell appears to have. As an example, a muscle cell may have thousands of mitochondria and a skin cell only a few hundred.

Antibodies to mitochondrial proteins have been reported in autism spectrum disorders, which are attributed to inflammatory conditions of the nervous system. Additionally children with severe autism have higher levels of inflammatory cytokines and certain immune molecules than controls.

In Blau’s syndrome, an autoinflammatory disease, symptoms are associated with the skin, joints, and eyes. It is often mistaken for sarcoidosis, a known autoimmune disease of the skin and other organs. Crohn’s disease is an inflammatory autoimmune bowel disease in which the immune system attacks its own digestive lining.

There are two genes, NOD1 and NOD2 that help regulate the production pro-inflammatory cytokines, immune molecules that cause inflammation. Mutations of these genes are found in a number of inflammatory disorders including Blau’s syndrome, sarcoidosis, and inflammatory bowel diseases.

Investigations of the pivotal role of gene regulation of inflammatory responses are underway; however, ways to neutralize the effects of such mutations may be years away.

Parents and clinicians do not have the luxury of just waiting. We know that inappropriate inflammatory responses are occurring in many, so why not determine whether the re-introduction of immune homeostasis, immune balance would make a difference in their quality of life?

 

www.parentsociety.com/parenting/when-doctors-dont-know-what-to-do-or-how-to-help/?goback=%2Egde_151241_member_74525704

www.ncbi.nlm.nih.gov/pmc/articles/PMC2735099/

www.ncbi.nlm.nih.gov/pubmed/16466630

www.ncbi.nlm.nih.gov/pubmed/21453638

www.ncbi.nlm.nih.gov/pubmed/21083929

www.ncbi.nlm.nih.gov/pubmed/21735170

www.ncbi.nlm.nih.gov/pubmed/18368292

www.ncbi.nlm.nih.gov/pubmed/21521652

www.ncbi.nlm.nih.gov/pubmed/21433392

 

Today, three immunologists, Drs. Ralph Steinman*, Jules Hoffman, and Bruce Beutler, won the Nobel Prize in Medicine/Physiology for adding to our scant knowledge of immune system responses to pathogenic microorganisms and cancer cells. Their studies should also provide a better understanding as to how excessive inflammation leads to autoimmunity, attacks on the body’s own healthy tissues.

Two decades ago Dr. Ralph Steinman and his colleague, Dr. Zanvil Alexander Cohn at the Center for Immunology and Immune Diseases, Rockefeller University in New York City, described dendritic cells, specialized immune cells that interact with other immune cells to define how the body will respond to underlying infection and disease.

Dendritic cells are essential to the body’s ability to control immune inflammatory homeostasis. Immune homeostasis is the delicate balance of all immune responses, especially inflammatory and anti-inflammatory responses, that that the body uses to fight disease. Too little inflammation may result in uncontrolled growth of pathogens or cancer cells, whereas too much inflammation, may result in autoimmune conditions such as diabetes, arthritis, lupus, multiple sclerosis, Crohn’s disease, etc.

Part of the role of immune homeostasis is to determine “what comes next” in meeting immune challenges. Dr. Steinman and his colleagues described an important phase of the immune response, “maturation”, which helps the body determine inflammatory and other responses to infection.

Dendritic cells are also important in helping the body maintain immunological “memory”. This assures a more rapid and thorough immune response if is attacked by the same pathogen another time. [Successful immunization depends on immunological memory.]

Dr. Jules Hoffman and his team, described how the immune system first recognizes invading pathogens and then helps trigger the immune system to go into its protective mode.

Dr. Beutler discovered the inflammatory cytokine, tumor necrosis factor, TNF, and a marker on certain bacterial cells that helps the body recognize that it has been infected, so that it can mount an appropriate inflammatory attack.

www.nobelprize.org/nobel_prizes/medicine/laureates/2011/press.pdf

www.rockefeller.edu/labheads/steinman/pdfs/2003-APMI.pdf

www.ncbi.nlm.nih.gov/pubmed/21960036

www.wrvo.fm/post/nobelists-showed-how-immune-defenses-work-and-go-awry

*The Nobel Committee has expressed “deep sadness and regret” at the news that Dr.
Steinman died a few days before its announcement.   Typically, the Nobel Prize is not awarded posthumously, but the Committee has decided to proceed with bestowing the award on Dr. Steinman.

According to the World Health Organization smoking is the second largest preventable cause of disease and premature death. Globally, tobacco products are responsible for 5 million deaths annually. A person dies every 6 seconds from smoking-related diseases including chronic diseases and cancer.

Among its many effects, smoking triggers an immunologic response in arteries and veins which is associated with increased levels of inflammatory markers, such as C-reactive protein and increases in white blood cells. C-reactive protein is strongly associated with lifetime smoking exposure as measured by pack-years. Several studies have shown that such markers predict future cardiovascular events including atherosclerosis.

However, once smokers quit, their risk of future cardiac events and death gradually declines, and within 5 years, smoking-associated inflammatory responses start to return to normal.

Cigarette smoking has also been linked to increased risk of autoimmune diseases, including lupus, rheumatoid arthritis, multiple sclerosis, thyroid, and liver. Autoimmune diseases are immune disorders where the body attacks itself resulting in excessive inflammation and tissue damage.

Considering that cigarette smoke contains over 7000 chemicals, the likelihood that smoking triggers autoimmune and other excessive inflammatory immunological responses makes sense. An example of smoke-induced illness is chronic obstructive pulmonary disease (COPD) in which a person has difficulty in getting enough air.

The lungs, in response to cigarette smoke, activate cells lining the lungs and immune cells, resulting in inflammatory responses. If an individual is infected with a bacterial or viral infection in addition to the smoke assault, it results in a vicious cycle of more difficulties in breathing and greater inflammation. Studies have indeed shown that patients with COPD have autoantibodies and inflammatory responses against lung cells.

Researchers have reported that in female smokers, physical activity, known to help reduce inflammation, reduced their relative risk of developing lung cancer by more than 65 percent.

Thus, it might be expected that if smokers were better able to control their inflammatory responses and return to immune homeostasis, that they might be less likely to develop chronic diseases.

 

www.ncbi.nlm.nih.gov/pmc/articles/PMC1160597/

www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.0020160

www.ncbi.nlm.nih.gov/pubmed/21907865

www.ncbi.nlm.nih.gov/pubmed/17975205

www.medicalnewstoday.com/releases/58661.php

 

This is the second part of a two day posting. Please see yesterday’s posting for the introduction to this posting. Thank you.

Cancer Risks

Responders are 19% more likely to develop cancer than their non-exposed colleagues, with skin, prostate, thyroid, and non-Hodgkin’s lymphoma, being the most common of the cancers. Many of the airborne toxins to which individuals were exposed, benzene, volatile organics, metals, polycyclic aromatic hydrocarbons, pulverized building materials, glass fibers, asbestos, lead, hydrochloric acid, polychlorinated biphenyls, organochlorine pesticides, and polychlorinated dioxins and furans are linked to causing cancer.

Cancer is an illness that may take years to develop and detect. Dr. Ware Kuschner, Stanford School of Medicine, CA says, “Carcinogenic effects, if any, will not be observed for a very long period of time.” [As an aside, according to the University of Pennsylvania School of Veterinary Medicine, eight search and rescue dogs have died from cancer since their exposure to rubble from the Sept. 11 terrorist attack.]

 

Pulmonary Function Declines

We do not have sufficient data from the general population residing and working in lower Manhattan, nor detailed health information of individuals that returned to their home states or countries after their contributions to rescue efforts. However, of the rescue, recovery, and clean-up personnel that were monitored, 42% have respiratory problems.

Steep declines in pulmonary function were first detected after 9/11 and they have largely persisted. Over the last nine years, 28% of those monitored have had asthma and 42% sinusitis (inflammation of sinuses). They also suffer from upper airway cough syndrome (UACS) and sarcoidosis. Sarcoidosis is an inflammatory autoimmune disorder in which the body’s own immune system attacks and destroys the tissues of the body. There has been a 36-fold increase in the number of individuals with this disease that can affect the lungs, lymph nodes, eyes, skin, heart, liver, and brain. The hallmarks of the disease are clusters of inflammatory cells throughout the body and often, significant, life-altering declines in breathing and other bodily functions.

 Inflamamtion: The Body’s Defense Against Perceived Threats

The immune system mounts an immune, inflammatory response when the body is exposed to pathogens, pollutants, or toxins. The inflammatory cells release immune factors, such as cytokines, cellular messages, that are involved in cell-to-cell communication with the “purpose” of recruiting more inflammatory cells into an area to help eliminate a perceived threat.

Pollutants and chemicals can trigger airway inflammation and increase mucous production. Other immune molecules cause narrowing of airways resulting in the contraction of the muscles lining the airways. The combination of inflammation and increased mucous makes it difficult for air to enter or leave the lungs and can result in breathing issues.

Additionally, lungs that do not function properly, areideal for the multiplication of molds, bacteria, and viruses. The lungs continue their struggle to eliminate pollutants and pathogens, resulting in a chronic, persistent, dry cough and worsened lung function.

 Immune Homeostasis, Immune Balance

A healthy person produces the right amount of inflammation in response to environmental and biological challenges. If WTC responders and others involved in rescue and clean-up of the 9/11 destruction, were able to control the amount of inflammation in their bodies , the body could finally start its healing process. Returning the body to inflammatory homeostasis, to inflammatory balance, would result in significant differences in the quality of their lives.

 

A Personal Note

It has been my conviction for years that a compromised immune system is at the root of the majority of health issues of World Trade Center responders, recovery and clean-up workers.

As a former New Yorker, I, as most Americans and overseas friends, took the attacks on America’s premier city personally and we still feel-grief and compassion, especially around this time of the year.

But what has really gnawed at me all these years is that surviving workers,–individuals who thought only of others and risked their lives to help despite terrible odds, are still suffering emotionally and physically.

I have been frustrated by my inability to reach the right people to share my decades long experience suggesting a different approach to helping individuals regain their health.

Based on decades of working with individuals having immune issues, I am confident that World Trade Centers workers would experience major quality of life changes if they were able to help their body regain its delicate balance—return to its optimum immune homeostasis.

These brave souls have visited physician after physician, clinic after clinic without a solution to what ails them. Ten years of searching for answers is long enough. It is now time for these individuals to take control of their own health by helping their bodies return to inflammatory homeostasis, balance.

I am not a health practitioner, but I am a scientist who can provide the facts to you. You will know within a short period of time whether or not my suggestions work for you.

I encourage you to contact me so we can start on the journey.

Resources:

www.guardian.co.uk/world/2011/sep/02/world-trade-centre-rescuers-health-risk

www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)60989-6/abstract

www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)61180-X/abstract

www.thelancet.com/journals/lanonc/article/PIIS1470-2045(01)00543-5/fulltext

www.home2.nyc.gov/html/doh/wtc/html/know/mental.shtml

 

css.php